5,340 research outputs found

    Carbon Dioxide Reduction Systems

    Get PDF
    The Methoxy system for regenerating oxygen from carbon dioxide was studied. Experiments indicate that the reaction between carbon dioxide and hydrogen can be carried out with ease in an efficient manner and with excellent heat conservation. A small reactor capable of handling the C02 expired by three men has been built and operated. The decomposition of methane by therma1,arc and catalytic processes was studied. Both the arc and catalytic processes gave encouraging results with over 90 percent of the methane being decomposed to carbon and hydrogen in some of the catalytic processes. Control of the carbon deposition in both the catalytic and arc processes is of great importance to prevent catalyst deactivation and short circuiting of electrical equipment. Sensitive analytical techniques have been developed for all of the components present in the reactor effluent streams

    Catalyst cartridge for carbon dioxide reduction unit

    Get PDF
    A catalyst cartridge, for use in a carbon dioxide reducing apparatus in a life support system for space vehicles, is described. The catalyst cartridge includes an inner perforated metal wall, an outer perforated wall space outwardly from the inner wall, a base plate closing one end of the cartridge, and a cover plate closing the other end of the cartridge. The cover plate has a central aperture through which a supply line with a heater feeds a gaseous reaction mixture comprising hydrogen and carbon dioxide at a temperature from about 1000 to about 1400 F. The outer surfaces of the internal wall and the inner surfaces of the outer wall are lined with a ceramic fiber batting material of sufficient thickness to prevent carbon formed in the reaction from passing through it. The portion of the surfaces of the base and cover plates defined within the inner and outer walls are also lined with ceramic batting. The heated reaction mixture passes outwardly through the inner perforated wall and ceramic batting and over the catalyst. The solid carbon product formes is retained within the enclosure containing the catalyst. The solid carbon product formed is retained within the enclosure containing the catalyst. The water vapor and unreacted carbon dioxide and any intermediate products pass through the perforations of the outer wall

    A carbon dioxide reduction unit using Bosch reaction and expendable catalyst cartridges

    Get PDF
    Catalytic carbon dioxide reduction cartridge for oxygen recovery in life support systems of long term manned space flight

    Carbon dioxide reduction in the building life cycle: a critical review

    Get PDF
    The construction industry is known to be a major contributor to environmental pressures due to its high energy consumption and carbon dioxide generation. The growing amount of carbon dioxide emissions over buildings’ life cycles has prompted academics and professionals to initiate various studies relating to this problem. Researchers have been exploring carbon dioxide reduction methods for each phase of the building life cycle – from planning and design, materials production, materials distribution and construction process, maintenance and renovation, deconstruction and disposal, to the material reuse and recycle phase. This paper aims to present the state of the art in carbon dioxide reduction studies relating to the construction industry. Studies of carbon dioxide reduction throughout the building life cycle are reviewed and discussed, including those relating to green building design, innovative low carbon dioxide materials, green construction methods, energy efficiency schemes, life cycle energy analysis, construction waste management, reuse and recycling of materials and the cradle-to-cradle concept. The review provides building practitioners and researchers with a better understanding of carbon dioxide reduction potential and approaches worldwide. Opportunities for carbon dioxide reduction can thereby be maximised over the building life cycle by creating environmentally benign designs and using low carbon dioxide materials

    Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction.

    Get PDF
    The synthesis of a new anionic 3D metal-catecholate framework, termed MOF-1992, is achieved by linking tetratopic cobalt phthalocyanin-2,3,9,10,16,17,23,24-octaol linkers with Fe3(-C2O2-)6(OH2)2 trimers into an extended framework of roc topology. MOF-1992 exhibits sterically accessible Co active sites together with charge transfer properties. Cathodes based on MOF-1992 and carbon black (CB) display a high coverage of electroactive sites (270 nmol cm-2) and a high current density (-16.5 mA cm-2; overpotential, -0.52 V) for the CO2 to CO reduction reaction in water (faradaic efficiency, 80%). Over the 6 h experiment, MOF-1992/CB cathodes reach turnover numbers of 5800 with turnover frequencies of 0.20 s-1 per active site

    Carbon Dioxide Reduction Technology Trade Study

    Get PDF
    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system analysis and comparison among the technologies was made based on ESM, technology readiness level and reliability. Those technologies with potential were recommended for development

    Integrated carbon dioxide reduction system feasibility study, part I Final report

    Get PDF
    Method for physical recovery of carbon dioxide from space cabin atmosphere and chemical recovery of metabolic oxyge

    Prototype Bosch CO2 reduction subsystem for the RLSE experiment

    Get PDF
    Requirements for the Bosch carbon dioxide reduction subsystem were established in a study of regenerative life support evaluation experiments. A detailed design is presented including a schematic, components list and characteristics, requirements summaries, and complete definition of life systems' advanced control/monitor instrumentation applied to the Bosch subsystem. Design information needed to proceed with the final design and fabrication of a preprototype system is presented

    Monitoring and control of atmosphere in a closed environment

    Get PDF
    Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed
    corecore