11,003 research outputs found

    Sorbents for carbon dioxide capture.

    Get PDF
    Provided herein are sorbents for carbon dioxide (CO2) capture, such as from natural gas and coal-fired power plant flue gases, and uses thereof

    Solvents for Carbon Dioxide Capture

    Get PDF
    Anthropogenic CO2 emissions are considered the major contributor of greenhouse gas emissions worldwide. The mitigation of this kind of CO2 emissions relies on a portfolio of alternatives where CO2 absorption appears as the nearest approach to be applied at industrial scale. Researchers have been focused on developing new formulations of solvents to make more competitive CO2 absorption as a carbon capture and storage (CCS) technology. In this sense, this chapter summarizes both the conventional solvents and the most recent investigations on this field. Chemical absorption is more suitable for a lot of industrial process due to the flue gas conditions: ambient pressure, low CO2 concentration and large volume. Therefore numerous novel solvents came up in recent years and they are further discussed in this chapter. The most recent solvents, their mechanisms and kinetics and the advantages and disadvantages are also included. Finally, physical solvents are adequate in high CO2 partial pressure applications and they are reported in the last section. Although physical absorption field is constrained to high-pressure flue gas, physical solvents provided higher performance in CO2 separation process and their characteristics are also summarized.Ministerio de Economía y Competitividad OXYSOLVENT Pro. CTM-2014-58573-RFondo Europeo de Desarrollo Regiona

    Power Generation System And Processes Thereof, Including Adsorbing Heat Exchangers For Co2 Capture From Fossil Fuel Consumption

    Get PDF
    The present invention generally relates to power generation systems configured to absorb and capture a component, such as carbon dioxide, in a flue gas for later sequestration or utilization, wherein heat generated in the sorption process is captured for use in the power generation system. In some examples, the heat of sorption is used to preheat fluids in one or more systems of the power generation system to reduce the heating load on the subsystem. By using the heat of sorption, the carbon dioxide capture and sequestration process not only reduces or eliminates the concentration of carbon dioxide in the flue gas, but reduces or eliminates the parasitic effect of carbon dioxide capture and sequestration on power generation.Georgia Tech Research Corporatio

    Solvents for Carbon Dioxide Capture

    Get PDF
    Anthropogenic CO2 emissions are considered the major contributor of greenhouse gas emissions worldwide. The mitigation of this kind of CO2 emissions relies on a portfolio of alternatives where CO2 absorption appears as the nearest approach to be applied at industrial scale. Researchers have been focused on developing new formulations of solvents to make more competitive CO2 absorption as a carbon capture and storage (CCS) technology. In this sense, this chapter summarizes both the conventional solvents and the most recent investigations on this field. Chemical absorption is more suitable for a lot of industrial process due to the flue gas conditions: ambient pressure, low CO2 concentration and large volume. Therefore numerous novel solvents came up in recent years and they are further discussed in this chapter. The most recent solvents, their mechanisms and kinetics and the advantages and disadvantages are also included. Finally, physical solvents are adequate in high CO2 partial pressure applications and they are reported in the last section. Although physical absorption field is constrained to high-pressure flue gas, physical solvents provided higher performance in CO2 separation process and their characteristics are also summarized

    Quantifying cooperative intermolecular interactions for improved carbon dioxide capture materials

    Get PDF
    We have optimized the geometry and calculated interaction energies for over 100 different complexes of CO₂ with various combinations of electron accepting (Lewis acid) and electron donating (Lewis base) molecules. We have used the recently developed explicitly correlated coupled cluster singles doubles and perturbative triples [CCSD(T)-F12] methods and the associated VXZ-F12 (where X = D,T,Q) basis sets. We observe only modest changes in the geometric parameters of CO₂ upon complexation, which suggests that the geometry of CO₂ adsorbed in a nanoporous material should be similar to that of CO₂ in gas phase. When CO₂ forms a complex with two Lewis acids via the two electron rich terminal oxygen atoms, the interaction energy is less than twice what would be expected for the same complex involving a single Lewis acid. We consider a series of complexes that exhibit simultaneous CO₂-Lewis acid and CO₂-Lewis base intermolecular interactions, with total interaction energies spanning 14.1–105.9 kJ mol⁻¹. For these cooperative complexes, we find that the total interaction energy is greater than the sum of the interaction energies of the constituent complexes. Furthermore, the intermolecular distances of the cooperative complexes are contracted as compared to the constituent complexes. We suggest that metal-organic-framework or similar nanoporous materials could be designed with adsorption sites specifically tailored for CO₂ to allow cooperative intermolecular interactions, facilitating enhanced CO₂ adsorption

    Regulating carbon dioxide capture and storage

    Get PDF
    This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational issues will need to be resolved for the industrial organization of CO2 transportation and storage, storage safety and integrity issues, and liability. Although there are some gaps in the current regulatory system as applied to CCS, we find that many of the currently identifiable issues have been successfully resolved in other contexts

    Carbon dioxide capture from Flue gases

    Get PDF
    Global warming and climate change are believed to be caused by the greenhouse effect. CO2 has been regarded as the main contributor to global climate change which directly results in serious environmental problems. Half of the anthropogenic CO2 emission sources are emitted from the combustion of fossil fuels in industries and power plants worldwide. The absorption behavior of Carbon dioxide from flue gases can be studied using conventional absorber and polymeric hollow fiber membrane contractors. An industrial absorber data was compared with simulated data using hollow fiber membrane contractor using the gPROMs software package. In this analysis, with the absorbent solution flowing in the inner side of the fiber bore and the pure gas in the shell, the module was operated in a non-wetted mode. The derived coupled, non-linear partial differential equations were solved by backward finite difference method. The Diethanolamine (DEA) was used as absorbent. The outlet absorbed Carbon dioxide concentration was simulated and studied with respect to the liquid velocity, initial amine concentration and external mass transfer coefficient. The analysis includes the effects of the diameter and length of the fibers on the liquid outlet gas concentration as a function of the liquid velocity in the fiber. It was found that the liquid velocity and initial absorbent concentrations, as well as the fiber inner diameter and length, have a tremendous effect on the Carbon dioxide removal performance

    Carbon Dioxide Capture and Air Quality

    Get PDF
    Carbon dioxide (CO2) is one of the most important greenhouse gases (GHG). The most dominant source of anthropogenic CO2 contributing to the rise in atmospheric concentration since the industrial revolution is the combustion of fossil fuels. These emissions are expected to result in global climate change with potentially severe consequences for ecosystems and mankind. In this context, these emissions should be restrained in order to mitigate climate change. Carbon Capture and Storage (CCS) is a technological concept to reduce the atmospheric emissions of CO2 that result from various industrial processes, in particular from the use of fossil fuels (mainly coal and natural gas) in power generation and from combustion and process related emissions in industrial sectors. The Intergovernmental Panel on Climate Change (IPCC) regards CCS as “an option in the portfolio of mitigation actions” to combat climate change (IPCC 2005). However, the deployment of CO2 capture at power plants and large industrial sources may influence local and transboundary air pollution, i.e. the emission of key atmospheric emissions such as SO2, NOX, NH3, Volatile Organic Compounds (VOC), and Particulate Matter (PM2.5 and PM10). Both positive as negative impacts on overall air quality when applying CCS are being suggested in the literature. The scientific base supporting both viewpoints is rapidly advancing. The potential interaction between CO2 capture and air quality targets is crucial as countries are currently developing GHG mitigation action plans. External and unwanted trade-offs regarding air quality as well as co-benefits when implementing CCS should be known before rolling out this technology on a large scale. The goal of this chapter is to provide an overview of the existing scientific base and provide insights into ongoing and needed scientific endeavours aimed at expanding the science base. The chapter outline is as follows. We first discuss the basics of CO2 capture, transport and storage in section 2. In section 3, we discuss the change in the direct emission profile of key atmospheric pollutants when equipping power plants with CO2 capture. Section 4 expands on atmospheric emissions in the life cycle of CCS concepts. We provide insights in section 5 into how air quality policy and GHG reduction policy may interact in the Netherlands and the European Union. Section 6 focuses on atmospheric emissions from post-combustion CO

    A comparative study of various strategies used for the mitigation of global warming

    Get PDF
    The global temperature has risen yearly by a bit more than 1 degree Celsius during the industrial revolution. Many experts believe that if current greenhouse gas emissions continue, the planet will become hotter, ocean level will rise and climatic conditions will change excessively. Temperatures are expected to rise faster in the coming decades than they have in the previous 10,000 years, according to some scientists. Greenhouse gases are thought to be the most important factor causing climate change. CO2 is by far the most important anthropogenic greenhouse gas, with concentration in the atmosphere rising by more than 80% between 1970 and 2021. About 91 percent of total CO2 emissions from human sources come from fossil fuels. Controlling greenhouse gas emissions and preparing human settlements to withstand extreme climate change have emerged as two of our age\u27s most daunting challenges. The purpose of this study is to discuss and compare various strategies that can be used for reducing or eliminating carbon dioxide emissions. Various CO2 reduction approaches have been investigated, including the replacement of fossil fuels with renewable energy sources, carbon dioxide capture and storage, and carbon dioxide capture and utilization. The goal of this research is to look at several options for meeting energy needs for long-term development without causing negative climate change i.e. renewable energy sources, carbon dioxide capture and storage, carbon dioxide capture and utilization

    Carbon aerogels used in carbon dioxide capture

    Get PDF
    In this work the maximum carbon dioxide adsorption capacity of carbon aerogels, obtained by a sol-gel process using 2,4-dihydroxybenzoic acid/formaldehyde (DHBAF) and resorcinol/formaldehyde (RF) as precursors, was studied. The effect of increasing the temperature of carbonization and physical activation of the samples DHBAF was also studied. The results showed that the maximum adsorption capacity is favoured at lower temperatures, adsorption and desorption are rapid and the performance is maintained over several cycles of CO2 adsorption/desorption. A comparison with samples of commercial carbons was also made and it was concluded that carbon aerogels exhibit a behaviour comparable or superior to that obtained for the commercial carbons studied
    corecore