27,618 research outputs found

    Understand spiciness: mechanism of TRPV1 channel activation by capsaicin.

    Get PDF
    Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel's transmembrane segments, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1

    Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations.

    Get PDF
    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate

    Capsaicin protects neuromuscular junctions from the inhibitory effects of botulinum neurotoxin A

    Get PDF
    Within 24 hrs after injecting botulinum neurotoxin A (BoNT/A) into the hindlimb, mice lost the toe spread reflex and developed progressive muscle weakness. At the same time, the compound muscle action potential amplitude decreased. Injection of capsaicin before BoNT/A significantly reduced these affects and protected the muscle twitch tension of the Extensor digitorum longus (EDL) nerve muscle preparation. Acute in vitro exposure of isolated nerve muscle preparations, as well as Neuro 2a cells, to capsaicin prevented uptake of Alexa 647 BoNT/A. Motor nerve endings as well as Neuro 2a cells express the capsaicin receptor, a transient receptor potential channel of the vanilloid family (TRPV1). Capsaicin as well as disruption of clathrin coated pits (CCPs) reduced Neuro 2a cell uptake of BoNT/A. FM1-43 uptake indicated that exocytosis persists for BoNT/A treated Neuro 2a cells pretreated with capsaicin. Pre-injection of wortmannin (WMN), a PI3Kinase inhibitor, also protected mice from the paralytic effects of BoNT/A. When applied alone, either WMN or capsaicin selectively reduced stimulus-evoked transmitter release from motor nerve endings. We hypothesize that TRPV1 activation reduces PI(4,5)P2 level within the membrane. This prevents CCP formation and uptake of BoNT/A

    Capsaicin-Induced Ca2+ Influx and Constriction of the Middle Meningeal Artery

    Get PDF
    Research in the past on transient receptor potential cation channel subfamily V member 1 (TRPV1) has been limited to mainly nervous tissue TRPV1 because of the channel’s role in pain perception. Here, we studied the potential role of TRPV1 in vascular smooth muscle. We have observed that capsaicin, a TRPV1 agonist, induced constriction of the middle meningeal artery (MMA). Our goal was to decipher the mechanism of capsaicin-induced constriction of the MMA. Arterial diameter measurements showed that constriction due to 100 nM capsaicin (65.4% ± 3.7, n=7) was significantly diminished in the presence of the voltage-dependent calcium channel (VDCC) blocker 100 µM diltiazem (43.1% ± 8.1, n=7). Capsaicin-induced constriction was not significantly altered in the presence of the sarco/endoplasmic reticulum calcium transport ATPase (SERCA) inhibitor 30 µM cyclopiazonic acid (63.7 ± 9.0%, n=5) compared to control arteries (58.4 ± 8.6%, n=5). The unaltered capsaicin-induced constriction of the MMA in the presence of a SERCA inhibitor suggests that calcium-induced calcium release does not contribute to the overall calcium influx mechanism within the smooth muscle cells of the MMA. The diminished capsaicin-induced constriction of the MMA in the presence of a VDCC blocker suggests that sodium entry through TRPV1 channels can possibly lead to the membrane potential depolarization and increased activity of VDCCs causing further calcium influx. Furthermore, since the capsaicin effect was not abolished by the blockage of VDCCs, our data suggest that calcium entry through TRPV1 is sufficient to cause approximately 65% of the total constriction of the MMA in response to activation of TRPV1

    Fast determination of capsaicinoids from peppers by High-Performance Liquid Chromatography using a reversed phase Monolithic Column

    Get PDF
    This article reports the development of a rapid and reproducible method of HPLC with fluorescence detection for the determination and quantification of the main capsaicinoids (nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydro-capsaicin) present in hot peppers by employing a monolithic column

    Topical treatment of peripheral neuropathic pain: applying the evidence

    Get PDF
    Patients with peripheral neuropathic pain (NP) may only achieve partial pain relief with currently recommended first-line oral treatments, which are also associated with systemic adverse events. Topical treatments are currently considered second- or third-line options, but a recent pharmacologic treatment algorithm has called for broader first-line use of these agents. This has highlighted a need to communicate the benefits associated with topical agents, in particular around the efficacy, targeted local action, and limited systemic availability resulting in minimal systemic adverse events and drug-drug interactions
    corecore