research

Capsaicin protects neuromuscular junctions from the inhibitory effects of botulinum neurotoxin A

Abstract

Within 24 hrs after injecting botulinum neurotoxin A (BoNT/A) into the hindlimb, mice lost the toe spread reflex and developed progressive muscle weakness. At the same time, the compound muscle action potential amplitude decreased. Injection of capsaicin before BoNT/A significantly reduced these affects and protected the muscle twitch tension of the Extensor digitorum longus (EDL) nerve muscle preparation. Acute in vitro exposure of isolated nerve muscle preparations, as well as Neuro 2a cells, to capsaicin prevented uptake of Alexa 647 BoNT/A. Motor nerve endings as well as Neuro 2a cells express the capsaicin receptor, a transient receptor potential channel of the vanilloid family (TRPV1). Capsaicin as well as disruption of clathrin coated pits (CCPs) reduced Neuro 2a cell uptake of BoNT/A. FM1-43 uptake indicated that exocytosis persists for BoNT/A treated Neuro 2a cells pretreated with capsaicin. Pre-injection of wortmannin (WMN), a PI3Kinase inhibitor, also protected mice from the paralytic effects of BoNT/A. When applied alone, either WMN or capsaicin selectively reduced stimulus-evoked transmitter release from motor nerve endings. We hypothesize that TRPV1 activation reduces PI(4,5)P2 level within the membrane. This prevents CCP formation and uptake of BoNT/A

    Similar works