147,979 research outputs found

    Cardiotoxicity and cancer therapy

    Get PDF
    A fundamental concept of treatment is to do no harm. However, with cancer treatment this is not always possible. Chemotherapy is associated with cardiovascular (CV) complications.1,2 This risk is even greater in the elderly patients and patients with established CV disease. More specifically, tachyarrhythmias (eg, cisplatin), bradyarrythmias (eg, paclitaxel), or QT prolongation (eg, dasatinib) have been reported. Furthermore, myocardial necrosis, coronary vaso-occlusion or vasospasm, pericardial disease (eg, cytarabine), endocardial fibrosis (eg, busulfan), and heart failure can occur. Hypotension (eg, fludarabine) or hypertension (eg, vinca alkaloids) has also been reported.1,2 Cardiotoxicity, endothelial injury, and Takotsubo syndrome have been reported in patients treated with 5-fluorouracil (5-FU).3⇓–5 Cardiotoxicity to 5-FU was reported 35 years ago.3⇓–5 Cardiotoxicity of chemotherapy has been reported in patients ranging from children through adults (eg, with anthracyclines or cisplatin).6 Adriamycin-induced myocyte damage has been attributed to the production of toxic oxygen free radicals.7 This can cause lipid peroxidation of membranes resulting in vacuolation, irreversible damage, and myocyte replacement by fibrous tissue.7 The use of angiogenesis inhibitors in cancer therapy is expanding as are the associated adverse CV effects (eg, hypertension, thromboembolism, left ventricular dysfunction, and QTc prolongation).2,8 Vascular endothelial growth factor (VEGF) plays a role in maintaining vascular homeostasis via the production of the vasodilator nitric oxide (NO) and decreased vascular resistance through the generation of new blood vessels.2,8 Therefore, it is not surprising that inhibition of VEGF signaling (eg, … [Full Text of this Article

    Targeting BCL-2 regulated apoptosis in cancer

    Get PDF
    The ability of a cell to undergo mitochondrial apoptosis is governed by pro- and anti-apoptotic members of the BCL-2 protein family. The equilibrium of pro- versus anti-apoptotic BCL-2 proteins ensures appropriate regulation of programmed cell death during development and maintains organismal health. When unbalanced, the BCL-2 family can act as a barrier to apoptosis and facilitate tumour development and resistance to cancer therapy. Here we discuss the BCL-2 family, their deregulation in cancer and recent pharmaceutical developments to target specific members of this family as cancer therapy

    European mistletoe/Iscador® FAQ

    Get PDF
    Mistletoe (Viscum album) may be the most commonly used complementary cancer therapy in Europe today. Background information and important questions are presented

    Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress

    Get PDF
    It has been known for about sixty years that proton and heavy ion therapy is a very powerful radiation procedure for treating tumours. It has an innate ability to irradiate tumours with greater doses and spatial selectivity compared with electron and photon therapy and hence is a tissue sparing procedure. For more than twenty years powerful lasers have generated high energy beams of protons and heavy ions and hence it has been frequently speculated that lasers could be used as an alternative to RF accelerators to produce the particle beams necessary for cancer therapy. The present paper reviews the progress made towards laser driven hadron cancer therapy and what has still to be accomplished to realise its inherent enormous potential.Comment: 40 pages, 24 figure

    Many faces of DAMPs in cancer therapy

    Get PDF
    A new concept of immunogenic cell death (ICD) has recently been proposed. The immunogenic characteristics of this cell death mode are mediated mainly by molecules called ‘damage-associated molecular patterns’ (DAMPs), most of which are recognized by pattern recognition receptors. Some DAMPs are actively emitted by cells undergoing ICD (e.g. calreticulin (CRT) and adenosine triphosphate (ATP)), whereas others are emitted passively (e.g. high-mobility group box 1 protein (HMGB1)). Recent studies have demonstrated that these DAMPs play a beneficial role in anti-cancer therapy by interacting with the immune system. The molecular pathways involved in translocation of CRT to the cell surface and secretion of ATP from tumor cells undergoing ICD are being elucidated. However, it has also been shown that the same DAMPs could contribute to progression of cancer and promote resistance to anticancer treatments. In this review, we will critically evaluate the beneficial and detrimental roles of DAMPs in cancer therapy, focusing mainly on CRT, ATP and HMGB1

    Cardio-oncology: concepts and practice

    Get PDF
    Substantial progress in cancer therapy increasingly allows higher cure rates, and even advanced disease can be stabilized, allowing improved survival with quality of life for months to years, meaning comorbid diseases are a growing determinant of outcome. Cardiovascular events substantially contribute to long-term morbidity and mortality in people living with or surviving cancer. In recognition of this, the subspecialty of cardio-oncology has emerged, and aims to promote cardiovascular heath, whilst facilitating the most effective cancer therapy. This review describes the concept of cardio-oncology, and illustrates the role played by a specialist team in improving outcomes, using heart failure secondary to breast cancer treatment as an example. We aim to highlight pivotal original research and comprehensive summaries of the most relevant topics, providing an overview for cardiologists and oncologists about this increasingly important medical problem

    Malignant disease in childhood : the price of cure : late physical and socioeconomic effects of treatment

    Get PDF
    The aim of cancer therapy in childhood is to achieve a lasting cure without physical and psychosocial harm and, preferably, at a low financial cost. Although cure is possible in many types of childhood cancer, this is often accompanied by complications as a consequence of intensive therapy. These late effects primarily affect fertility, the cardio-respiratory and endocrinological systems. Psychosocial adverse effects may have serious implications on the marriage and employment prospects of those patients surviving into adulthood. Furthermore, the risk of treatment-induced, secondary malignancies may increase as survival improves. With current intensive chemotherapy and radiotherapy, the attainment of cure rates in (EXC)ess of 60-70% is, inevitably, associated with significant morbidity. Indeed, recent developments in cancer therapy have focused on ways of reducing this morbidity, whilst still maintaining the overall improvement in survival.peer-reviewe

    Immuno Magnetic Thermosensitive Liposomes For Cancer Therapy

    Get PDF
    The present work describes the encapsulation of the drug doxorubicin (DOX) in immuno paramagnetic thermosensitive liposomes. DOX is the most common chemotherapeutic agent for the treatment of a variety of carcinomas. However, the pure drug has high cytotoxicity and therefore requires a targeted and biocompatible delivery system. The introduction includes concepts, modalities, and functionalities of the project. First, a detailed description of the cell type (triple-negative breast cancer) is given. Furthermore, the importance of liposomal doxorubicin is explained and the current state of research is shown. The importance of modification to achieve thermosensitive properties and the procedure for co-encapsulation with Gd chelate to achieve paramagnetic properties is also discussed. In addition, the first part describes the surface modification with ADAM8 antibodies, which leads to improved targeting. The second part of the thesis covers the different materials and methods used in this paper. The production of the liposomes LipTS, LipTS-GD, LipTS-GD-CY, LipTS-GD-CY-MAB and the loading of DOX using an ammonium sulfate gradient method were described in detail. The results part deals with the physicochemical characterization using dynamic light scattering and laser Doppler velocimetry, which confirmed a uniform monodisperse distribution of the liposomes. These properties facilitate the approach of liposomes to target cancer cells. The influence of lipid composition of liposomes, co-encapsulation with Gd chelate and surface modification of liposomes was evaluated and described accordingly. The size and structure of the individual liposomal formulations were determined by atomic force microscopy and transmission electron microscopy. Morphological examination of the liposomes confirmed agreement with the sizes obtained by dynamic light scattering. Temperature-dependent AFM images showed an intact liposome structure at 37 °C, whereas heating by UHF-MRI led to a lipid film indicating the destruction of the lipid bilayer. Furthermore, TEM images showed the morphological properties of the liposomes and gave a more precise indication of how Gd-chelate accumulates within the liposomes. Liposomes with Gd-chelate showed well-separated vesicles, suggesting that Gd- chelate is deposited in the lipid bilayer of the liposomes. Gd was encapsulated in the hydrophilic core whereas chelate was extended into the lipid bilayer. By differential scanning calorimetry and drug release, the heat-sensitive functionality of the liposomes could be determined. Liposomes showed a beginning of phase transition temperature at about 38 °C, which can be achieved by UHF-MRI exposure. The maximum phase transition temperature in the case of LipTS-GD and LipTS-GD-CY-MAB was 42 °C and 40 °C, respectively. A proof of concept study for the thermosensitive properties of liposomes and a time-dependent DOX release profile in hyperthermia was performed. Gd-chelate is encapsulated in both LipTS-GD and LipTS-GD-CY-MAB and led to paramagnetic properties of the liposomes. This facilitates imaging mediated DOX delivery and diagnosis of the solid tumor and metastatic cells. The change in relaxation rate R1 of liposomes was quantified before and after heating above Tm (T> Tm). The relaxivity of the liposomes was obtained from the adapted slope of the relaxation rate against the Gd concentration. Remarkably, the relaxation rate and relaxivity increased after heating the liposomes above Tm (T> Tm), suggesting that the liposomes opened, released Gd chelate, and the exchange of water molecules became faster and more practicable. Toxicity studies describe the different mechanisms for induced DOX toxicity. The increased cytotoxic effect at elevated temperatures showed that the induced toxicity is thermally dependent, i.e. DOX was released from the liposomes. The high viability of the cells at 37 °C indicates that the liposomes were intact at normal physiological temperatures. Under UHF-MRI treatment, cell toxicity due to elevated temperature was observed. The cellular uptake of liposomes under UHF-MRI was followed by a confocal laser scanning microscope. An increase in fluorescence intensity was observed after UHF-MRI exposure. The study of the uptake pathway showed that the majority of liposomes were mainly uptake by clathrin-mediated endocytosis. In addition, the liposomes were modified with anti-ADAM8 antibodies (MAB 1031) to allow targeted delivery. The cellular binding capabilities of surface-modified and non-modified liposomes were tested on cells that had ADAM8 overexpression and on ADAM8 knockdown cells. Surface-modified liposomes showed a significant increase in binding ability, indicating significant targeting against cells that overexpress ADAM8 on their surface. In addition, cells with knockdown ADAM8 could not bind a significant amount of modified liposomes. The biocompatibility of liposomes was assessed using a hemolysis test, which showed neglected hemolytic potential and an activated thromboplastin time (aPTT), where liposomes showed minimal interference with blood clotting. Hemocompatibility studies may help to understand the correlation between in vitro and in vivo. The chorioallantois model was used in ovo to evaluate systematic biocompatibility in an alternative animal model. In the toxicity test, liposomes were injected intravenously into the chicken embryo. The liposomes showed a neglectable harmful effect on embryo survival. While free DOX has a detrimental effect on the survival of chicken embryos, this confirms the safety profile of liposomes compared to free DOX. LipTS-GD-CY-MAB were injected into the vascular system of the chicken embryo on egg development day 11 and scanned under UHF-MRI to evaluate the magnetic properties of the liposomes in a biological system with T2-weighted images (3D). The liposomal formulation had distinct magnetic properties under UHF MRI and the chick survived the scan. In summary, immunomagnetic heat-sensitive liposomes are a novel drug for the treatment of TNBC. It is used both for the diagnosis and therapy of solid and metastasizing tumors without side effects on the neighboring tissue. Furthermore, a tumor in the CAM model will be established. Thereafter, the selective targeting of the liposomes will be visualized and quantitated using fluorescence and UHF-MRI. Liposomes are yet to be tested on mice as a xenograft triple-negative breast cancer model, in which further investigation on the effect of DOX-LipTS-GD-CY-MAB is evaluated. On one hand, the liposomes will be evaluated regarding their targetability and their selective binding. On the other hand, the triggered release of DOX from the liposomes after UHF-MRI exposure will be quantitated, as well as evaluate the DOX-Liposomes therapeutic effect on the tumor
    • …
    corecore