105 research outputs found

    High-temperature rapid-response thermocouple for reducing atmospheres

    Get PDF
    Thermocouple measures continuously in flowing gaseous hydrogen at temperatures up to 4000 deg F, in environments made hazardous by radiation, and where rapid response and calibration reproducibility are critically important. Thermocouple wires extend continuously, without splice or foreign material, from cold junction to probe's tip

    Small turbing-type flowmeters for liquid hydrogen

    Get PDF
    Characteristics of turbine-type flowmeters in two sizes and with various types of bearings are presented. Calibration procedures of instruments are described. Accuracies obtainable under various conditions are analyzed

    3-D calibration method and algorithm for freehand image of phased array ultrasonic testing

    Get PDF
    Phased array ultrasonic testing (UT) is an advanced technique applying ultrasound wave vibration theory to detect the flaw in tested materials by imaging. In this research, computer 3-D visualization of the flaw through calibrating the ultrasonic phased array image is proposed. 3-D calibration for ultrasonic phased array image is a procedure to calculate the spatial transformation matrix, spatial relationship between the US image plane and the tracker attached to the UT probe. The calibration method depends on a cross-string phantom and the corresponding algorithm. The phantom with a set of crosses guiding the operator quickly to find the scanning plane. The ten string crosses in the scanning plane provide the coordinates and spatial vectors for the calibration algorithm, thus the calibration algorithm can be realized based on the least-squares fitting method of the homologous points matching. Select the points having different distances and angles with the reference point to calculate the matrix and average them as the final result. The results show that the scanning plane positioning time is no more than 5 s. The precision and the accuracy results are the same as that is obtained through the other published methods in the medical 3-D ultrasound image calibration. The results make the 3-D flaw model reconstruction possible in phased array ultrasonic NDT. It will reduce the difficulties in the flaw recognizing and localization

    Life tests of small turbine-type flowmeters in liquid hydrogen

    Get PDF
    A total of 14 turbine-type flowmeters of 2.5- and 4-cm nominal size were operated for 100 or more hours at an average fluid speed in the unobstructed, upstream pipe of 20 m/s for the smaller meters and 9 m/s for the larger meters. Calibration shifts over a 6.1 range of calibration flow rates varied from 0.5 percent to 1 percent after 50 hr of operation. It is concluded that use of ball bearings with glass-filled Teflon retainers is most likely to produce minimal calibration shift with protracted use. Bearing replacement after 50 to 100 hr is recommended, depending on accuracy requirements, for meters used at the fluid speeds of the tests

    Integrated opto-chemical sensors

    Get PDF
    Integrated opto-chemical sensors have promising prospects, for example by having the potential to be realized as very sensitive small monolithic smart multisensor systems with a digital signal output. Here the main accent will be laid on the optical principles underlying chemo-optical waveguiding sensors, focusing on linear evanescent field sensors. Sensing principles and systems based on interferometry, surface plasmon resonance and luminescence quenching will be treated in more detail. Materials and technologies applied to integrated optic sensors are mentioned

    Biological validation of coenzyme Q redox state by HPLC-EC measurement: relationship between coenzyme Q redox state and coenzyme Q content in rat tissues

    Get PDF
    AbstractThe properties of coenzymes Q (CoQ9 and CoQ10) are closely linked to their redox state (CoQox/total CoQ)×100. In this work, CoQ redox state was biologically validated by high performance liquid chromatography-electrochemical measurement after modulation of mitochondrial electron flow of cultured cells by molecules increasing (rotenone, carbonyl cyanide chlorophenylhydrazone) or decreasing (antimycin) CoQ oxidation. The tissue specificity of CoQ redox state and content were investigated in control and hypoxic rats. In control rats, there was a strong negative linear regression between tissular CoQ redox state and CoQ content. Hypoxia increased CoQ9 redox state and decreased CoQ9 content in a negative linear relationship in the different tissues, except the heart and lung. This result demonstrates that, under conditions of mitochondrial impairment, CoQ redox control is tissue-specific

    Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    Get PDF
    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of “in vivo” dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses
    corecore