1,368 research outputs found

    Personalized content retrieval in context using ontological knowledge

    Get PDF
    Personalized content retrieval aims at improving the retrieval process by taking into account the particular interests of individual users. However, not all user preferences are relevant in all situations. It is well known that human preferences are complex, multiple, heterogeneous, changing, even contradictory, and should be understood in context with the user goals and tasks at hand. In this paper, we propose a method to build a dynamic representation of the semantic context of ongoing retrieval tasks, which is used to activate different subsets of user interests at runtime, in a way that out-of-context preferences are discarded. Our approach is based on an ontology-driven representation of the domain of discourse, providing enriched descriptions of the semantics involved in retrieval actions and preferences, and enabling the definition of effective means to relate preferences and context

    Particular object retrieval with integral max-pooling of CNN activations

    Get PDF
    Recently, image representation built upon Convolutional Neural Network (CNN) has been shown to provide effective descriptors for image search, outperforming pre-CNN features as short-vector representations. Yet such models are not compatible with geometry-aware re-ranking methods and still outperformed, on some particular object retrieval benchmarks, by traditional image search systems relying on precise descriptor matching, geometric re-ranking, or query expansion. This work revisits both retrieval stages, namely initial search and re-ranking, by employing the same primitive information derived from the CNN. We build compact feature vectors that encode several image regions without the need to feed multiple inputs to the network. Furthermore, we extend integral images to handle max-pooling on convolutional layer activations, allowing us to efficiently localize matching objects. The resulting bounding box is finally used for image re-ranking. As a result, this paper significantly improves existing CNN-based recognition pipeline: We report for the first time results competing with traditional methods on the challenging Oxford5k and Paris6k datasets

    Visual Landmark Recognition from Internet Photo Collections: A Large-Scale Evaluation

    Full text link
    The task of a visual landmark recognition system is to identify photographed buildings or objects in query photos and to provide the user with relevant information on them. With their increasing coverage of the world's landmark buildings and objects, Internet photo collections are now being used as a source for building such systems in a fully automatic fashion. This process typically consists of three steps: clustering large amounts of images by the objects they depict; determining object names from user-provided tags; and building a robust, compact, and efficient recognition index. To this date, however, there is little empirical information on how well current approaches for those steps perform in a large-scale open-set mining and recognition task. Furthermore, there is little empirical information on how recognition performance varies for different types of landmark objects and where there is still potential for improvement. With this paper, we intend to fill these gaps. Using a dataset of 500k images from Paris, we analyze each component of the landmark recognition pipeline in order to answer the following questions: How many and what kinds of objects can be discovered automatically? How can we best use the resulting image clusters to recognize the object in a query? How can the object be efficiently represented in memory for recognition? How reliably can semantic information be extracted? And finally: What are the limiting factors in the resulting pipeline from query to semantics? We evaluate how different choices of methods and parameters for the individual pipeline steps affect overall system performance and examine their effects for different query categories such as buildings, paintings or sculptures

    Cross-dimensional Weighting for Aggregated Deep Convolutional Features

    Full text link
    We propose a simple and straightforward way of creating powerful image representations via cross-dimensional weighting and aggregation of deep convolutional neural network layer outputs. We first present a generalized framework that encompasses a broad family of approaches and includes cross-dimensional pooling and weighting steps. We then propose specific non-parametric schemes for both spatial- and channel-wise weighting that boost the effect of highly active spatial responses and at the same time regulate burstiness effects. We experiment on different public datasets for image search and show that our approach outperforms the current state-of-the-art for approaches based on pre-trained networks. We also provide an easy-to-use, open source implementation that reproduces our results.Comment: Accepted for publications at the 4th Workshop on Web-scale Vision and Social Media (VSM), ECCV 201

    The aceToolbox: low-level audiovisual feature extraction for retrieval and classification

    Get PDF
    In this paper we present an overview of a software platform that has been developed within the aceMedia project, termed the aceToolbox, that provides global and local lowlevel feature extraction from audio-visual content. The toolbox is based on the MPEG-7 eXperimental Model (XM), with extensions to provide descriptor extraction from arbitrarily shaped image segments, thereby supporting local descriptors reflecting real image content. We describe the architecture of the toolbox as well as providing an overview of the descriptors supported to date. We also briefly describe the segmentation algorithm provided. We then demonstrate the usefulness of the toolbox in the context of two different content processing scenarios: similarity-based retrieval in large collections and scene-level classification of still images
    corecore