652 research outputs found

    电化学获奖人优秀论文专辑序言

    Get PDF
    2018年是电化学专业委员会成立30周年. 30年来,中国的电化学事业取得了巨大发展,国际学术交流越来越频繁,研究水平业已跻身国际前列,在全球电化学学术领域占有重要一席之地.在我国广大电化学工作者和国际同行的支持下,中国电化学科学的专业学术期刊——《电化学》也正在茁壮成长,成为我国科学研究的重要核心刊物

    电化学国际学术大会简介

    Get PDF

    人才 理念 体制

    Get PDF
    构建大学知识创新体系,提升自主创新能力,包含人才、理念、体制三个方面。人才,特别是高层次研究人才是自主创新的关键。厦门大学为何定位为研究型大学呢?在于厦门大学的这样一个全国性重点的责任,它不仅要培养创新型的人才,而且还要通过科学研究来创新知识,提升自主创新能力。厦门大学办学85年来,涌现了一批优秀的顶尖型的人才队伍,有中科院院士,有工程院院士,还有一批优秀的中青年队伍,其中研究生已经成为科学研究的生力军

    《物理电化学——原理、方法和应用》

    Get PDF
    《物理电化学——原理、方法和应用》(PhysicalElectrochemistry—Principles,MethodsandApplications)本书由以色列weizmann科学研究院IsraelRubinstein教授主编,于1995年由M...作者联系地址:厦门大学化学

    Self-Assembly and Characterization of Pt Nanoparticles by Electrochemistry and In-Situ FTIR Reflection Spectroscopy

    Get PDF
    用化学还原法制备了铂金属纳米微粒 ,透射电子显微镜 (TEM)表征纳米Pt微粒的平均直径为 2 5nm。通过二硫醇将Pt纳米微粒组装到多晶金电极表面。以Fe(CN) 4- 3-6 的氧化还原作为探针反应的电化学研究表明 ,Au表面组装二硫醇后抑制了电极 /溶液界面的电子传递过程 ,而在二硫醇上再组装铂纳米微粒后 ,电子传递又可进行。运用电化学FTIR反射光谱研究了Pt纳米微粒组装电极在酸性介质中CO的吸附 ,检测到CO的线型、桥式吸附态 ,分别在 2 0 30和 184 5cm- 1 附近给出红外吸收谱峰 ,并且有增强红外效应。此外 ,还观察到Pt纳米微粒上的CO孪生吸附态。红外吸收峰位于 2 10 0cm- 1 附近。Pt nanoparticles (Pt n) were prepared by chemical reduction method. The average dimension of Pt n is about 2.5 nm in diameter determined from TEM studies. The Pt nanoparticles were then self-assembled on massive Au substrate. The process of self-assembly was investigated with Fe(CN) 4-/3- 6 for redox probe reaction. The result showed that the dithiol assembled on Au surface is inactive for electron transfer. However after assembly of Pt nanoparticles on the dithiol, the Au/SS-Pt n electrode becomes conductive again for electron transfer. The adsorption of CO on the Pt nanoparticles self-assembled on Au substrate in 0.1 mol·L -1 H 2SO 4 was studied by using in situ FTIR reflection spectroscopy. IR absorption of linear and bridge bonded CO species was observed around 2 030 and 1 845 cm -1 respectively. IR absorption of twin bounded CO adsorbed on the Pt nanoparticles was also observed about 2 100 cm -1. The results illustrated that the IR absorption of CO adsorbed on the Pt nanoparticles has been significantly enhanced. The present study is devoted to revealing the intrinsic properties of self-assembly system of nanoparticles, and is of importance in applications of electrocatalysis as well.国家自然科学基金 (2 0 0 2 1 0 0 2,2 98330 60,2 0 0 2 30 0 1 );; 教育科学研究基金资助项

    Electrochemically shape-controlled formation of concave AuPd alloy nanoparticles on ITO substrate

    Get PDF
    运用电化学方波电位法, 在氧化铟锡(ITO)透明导电膜玻璃基底上实现AuPd纳米粒子的形状控制合成. 当固定方波下限电位0.30 V,; 上限电位分别为0.64和0.70 V时, 分别制备出内凹三八面体(TOH)和内凹六八面体(HOH) AuPd合金纳米粒子.; 运用扫描电镜(SEM)、X射线能量散射谱(EDX)和电化学循环伏安法表征所制备的纳米粒子, 结果表明所制备的AuPd纳米粒子在ITO上分散均匀,; 具有清晰的内凹三八面体和内凹六八面体的形状, Au:Pd元素比均接近3:1. 但由于Au比Pd的表面自由能低,; 导致Au在AuPd合金纳米粒子表面富集.发现从合成的TOH AuPd合金纳米粒子出发, 对其施加下限电位0.30 V、上限电位0.70; V的方波电位处理, 可实现由TOH向HOH形状转变; 延长方波电位处理时间仅改变AuPd合金纳米粒子的尺寸, 但HOH形状保持不变.Shape-control of AuPd alloy nanoparticles (AuPd NPs) substrated on; indium-tin oxide (ITO) was successfully achieved, for the first time, by; using electrochemical square-wave-potential (SWP) method. Concave; trisoctahedral AuPd alloy NPs (TOH AuPd NPs) and concave hexoctahedral; AuPd alloy NPs (HOH AuPd NPs) were prepared under SWP conditions with; lower potential of 0.3 V while different upper potentials of 0.64 and; 0.70 V, respectively. Different techniques including SEM, EDX and; electrochemical cyclic voltammetry were employed to characterize the; morphology and composition of AuPd alloy NPs. The results demonstrated; that the as-prepared TOH AuPd NPs and HOH AuPd NPs are uniform in shape; of correspondingly concave TOH and concave HOH, and are well dispersed; on the ITO substrate. The composition in terms of and Au:Pd atomic ratio; of both TOH and HOH AuPd alloy NPs is determined by EDX around 3:1.; However, a surface enrichment of Au on the AuPd NPs was observed, and is; ascribed to the lower surface energy of Au in comparison with that of; Pd. It has been found that, starting from the as-synthesized TOH AuPd; NPs, shape transformation from TOH to HOH can be accomplished by; applying a treatment of square wave with lower potential of 0.3 V and; upper potential of 0.7 V. Prolonging the treatment time results in; increasing the size of AuPd NPs, while the HOH shape is preserved.国家自然科学基

    Preface Special Issue in Honor of Professor Zhaowu Tian on His 90Birthday

    Get PDF
    The Journal of Electrochemistry is proud to publish this Special Issue Honoring Professor Zhaowu Tian,on the occasion of his 90birthday,for his enormous contributions to and far-reaching impact in the field of electrochemistry

    Electrodeposition and Electrochemical Properties of Ternary Sn-Co-Zn Alloy Electrodes as Anodes for Lithium-Ion Batteries

    Get PDF
    Corresponding author. Email: [email protected]; Tel: +86-592-5343629.[中文文摘]运用电沉积技术制备出Sn-Co-Zn合金电极材料.采用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了该合金材料的相结构和表面形貌.通过循环伏安和电位阶跃实验研究了Sn-Co-Zn合金的电沉积机理,实验表明,Sn-Co-Zn合金电沉积按扩散控制连续成核和三维生长方式进行.XRD结果表明,该合金由CoSn3、Co3Sn2和Zn组成.电化学性能测试表明:Sn-Co-Zn合金电极首次放电(脱锂)容量达751mAh·g-1,首次循环的库仑效率为88%;30周循环之后放电容量为510mAh·g-1.该Sn-Co-Zn合金电极良好的电化学储锂性能可能归因于材料的多相结构.[英文文摘]A ternary Sn-Co-Zn alloy film was successfully prepared by electrodepositi on copper foil. Electrochemical deposition of the Sn-Co-Zn alloy was studied by cyclic voltammetry (CV) and chronoamperometry (CA). The structure and electrochemical performance of the electroplated Sn-Co-Zn alloy electrodes were also investigated in detail. The CV and CA results revealed that the initial deposition kinetics of the Sn-Co-Zn alloy corresponds to a model that includes a three-dimensional progressive nucleation and diffusion controlled growth. XRD results showed that the electrodeposited Sn-Co-Zn alloy consists of CoSn3, Co3Sn2, and Zn phase. Electrochemical tests indicated that at the first cycle, the discharge capacity (desertion) and columbic efficiency are measured 751 mAh·g-1 and 88%, respectively, at the 30th cycle, the Sn-Co-Zn alloy electrodes still delivered a discharge capacity of 510 mAh·g-1. The good lithium storage performance of the Sn-Co-Zn electrode is ascribed to multi-phase structure of the electrode.国家自然科学基金(20773102);国家基础研究重大项目计划(973)(2009CB220102)资

    Pt纳米微粒电极上CO吸附的电化学循环伏安和原位FTIR反射光谱

    Get PDF
    用化学还原法制备铂金属纳米微粒.经TEM表征纳米Pt微粒的平均直径为2.5nm.应用电化学循环伏安法研究了该纳米微粒电极的电化学性质,与本体Pt相比,吸附在Pt纳米微粒表面CO的氧化电流峰较宽.原位傅里叶变换红外反射光谱检测到Pt纳米微粒电极表面的孪生吸附态CO,以及随电极电位变化线型吸附和孪生吸附态CO向桥式吸附态CO的转化过程.还发现了Pt纳米微粒上吸附态CO的增强红外吸收等一系列特殊性能.国家自然科学基金资助项目(批准号:29833060,20021002)
    corecore