简报

林学道报 第47卷第22期 2002年11月

Pt 纳米微粒电极上 CO 吸附的电化学循环伏安 和原位 FTIR 反射光谱

陈卫 姜艳霞 孙世刚*

(厦门大学化学系、固体表面物理化学国家重点实验室、厦门 361005.*联系人、E-mail: sgsun@xmu.edu.cn)

摘要 用化学还原法制备铂金属纳米微粒.经 TEM 表征纳米 Pt 微粒的平均直径为 2.5 nm. 应用电化学 循环伏安法研究了该纳米微粒电极的电化学性质,与本体 Pt 相比,吸附在 Pt 纳米微粒表面 CO 的氧化 电流峰较宽.原位傅里叶变换红外反射光谱检测到 Pt 纳米微粒电极表面的孪生吸附态 CO,以及随电极 电位变化线型吸附和孪生吸附态 CO 向桥式吸附态 CO 的转化过程.还发现了 Pt 纳米微粒上吸附态 CO 的增强红外吸收等一系列特殊性能.

关键词 纳米微粒 Pt 电化学 原位 FTIRs

纳米材料是当今一个多学科研究的热点^[1-3]. 金 属纳米微粒,由于直径小于 100 nm 而具有小尺寸效 应、量子效应、表面效应等,使其表现出许多既不同 于本体金属也不同于金属原子的独特性能,引起了 广泛的关注^[4-6]. 金属纳米微粒的制备、性质以及在 物理、化学、生物等领域的应用都是研究的重点. 其 中过渡金属纳米微粒在催化、光电化学、超敏化学传 感器等方面有重要的应用潜力.一些研究指出,纳米 尺度的铂对某些反应的催化性能大大优于传统的催 化剂^[7-9]. 本文用化学还原法制备 Pt 金属纳米微粒, 其尺度用 TEM 进行表征. 同时,以 CO 为分子探针, 运用电化学循环伏安法及原位红外反射光谱研究了 铂纳米微粒电极的特性.

1 实验

(i) Pt 金属纳米微粒的合成¹¹⁰. 称取 H₂PtCl₆•6H₂O 0.293 g溶解于 140 mL 水中. 再加入 3.12 g 的聚乙烯吡咯烷酮(PVP)和 180 mL 甲醇,在剧 烈搅拌下逐滴加入 40 mL 0.1 mol • L⁻¹的 NaOH 溶液. 该混合溶液回流 3 h 即得到黑色的 Pt 金属胶体溶液. 把胶体中的甲醇和水蒸发后重新分散于溶剂中备用.

(ii)纳米铂微粒电极制备. 圆盘多晶金电极表 面依次用 5~0.5 μm 的 Al₂O₃粉末仔细研磨,用超声波 水浴除去表面研磨杂质,用超纯水冲洗干净后烘干. PVC,即聚氯乙烯,为多孔材料,具有一定的透水和 透气性,常作为修饰电极的成膜剂,在溶液中由于离 子在电场作用下在孔道中移动而导电. 处理好的金 表面涂上 Pt 纳米微粒后用 PVC 将其紧密地固定在表 面上制成工作电极,记为 nm-Pt_n/Au,薄膜厚度为几 微米. 铂黑为对电极,饱和甘汞电极为参比电极.

(iii) 实验条件. 高分辨透射显微观察在 JEOL-2000FX 型电子显微镜上进行,加速电压为 120 kV. 用 XHD- II 型恒电位仪(厦门大学化学系)进行电化学 实验, 扫描速度为 50 mV/s. 电化学原位红外反射光 谱实验在 Nexus 870(Nicolet)红外仪上进行, 配备液 氯冷却的 MCT-A 型检测器和 EverGlo[™] 红外光源. 实验装置参见文献[11]. 由于固/液界面溶剂分子特 别是水分子对红外大量吸收、同时电极表面吸附物 种(这里为 CO)量少,用常规红外反射光谱方法几乎 检测不到吸附物种的红外吸收,因此电化学原位红 外反射光谱常采用电位差谱,即在保持其他条件不 变的情况下, 仅改变电极电位在两个数值间变化, 从 而获得两个电位下红外反射单光束光谱之差. 在本 研究中,选取 CO 稳定吸附于电极表面的电位为研究 电位 E_s , 在参考电位 E_R 下, CO 完全氧化为 CO₂, 从 而在差谱中给出吸附态 CO 的信息. 采用多步电位阶 跃(MSFTIRS)方法^[5],首先往红外电解池中通入 CO, 同时控制电位在-0.25~0.00 V 区间(CO 可稳定吸附 在电极表面)循环扫描, 直至 CO 在电极表面的吸附 达到饱和, 然后通入 N2气除去溶液中的 CO, 最后调 整电极与红外窗片间的平行配合使红外光反射强度 最大. 分别于研究电位 Es和参考电位 ER下采集单光 **東光谱** *R*(*E*_s), *R*(*E*_R), 结果光谱表示为Δ*R*/*R* = [R(E_s)-R(E_R)]/R(E_R). 每个单光束光谱都由 400 张 干涉图累加而成,光谱分辨率为 16 cm⁻¹. 溶液用 Milipore 超纯水和超纯硫酸试剂配制. 实验开始前通

1698

www.scichina.com

高纯氮气 20 min 以除去溶液中的氧. 所有实验均在 室温下进行.

2 结果与讨论

2.1 Pt 纳米微粒的 TEM 表征

图 1(a)和(b)分别为所制备的 Pt 纳米微粒的透射 电子显微镜照片和 TEM 电子衍射图. 由图 1(a)可以 看出,制备的纳米粒子为球形,分布比较均匀. 微粒 的平均直径为 2.5 nm. 但也可以看到有少量纳米微 粒的团聚现象. 在电子衍射图中,衍射环条纹清晰, 表明样品为 Pt 的多晶微粒. 同时,衍射环比较弥散, 也在一定程度上证实 Pt 微粒的纳米尺度.

图 1 Pt 纳米微粒的 TEM 图像(a)和 Pt 纳米微粒的 TEM 电子衍射图(b)

2.2 电化学循环伏安(CV)结果

当 CO 在电极表面吸附达到饱和后,通 N₂ 除尽 0.5 mol·L⁻¹ H₂SO₄溶液中的 CO,记录的 CV 曲线如 图 2 中实线所示.比较第 1 周和第 2 周电位扫描的 CV 曲线,可看到吸附态 CO(CO_{ad})抑制了-0.25 至 0.05 V 区间氢在 Pt_n上的吸脱附过程,其氧化给出位 于 0.7 和 0.87 V 附近的两个电流峰.因 CO_{ad} 在第 1 周电位扫描中被完全氧化,因此第 2 周的 CV 曲线即 给出 nm-Pt_n/Au 在 0.5 mol·L⁻¹ H₂SO₄溶液中的 CV 特征,可观察到在-0.25~0.05 V 区间氢吸脱附电流、

www.scichina.com

图 2 nm-Pt_n/Au 电极循环伏安曲线 实线: 0.5 mol・L⁻¹ H₂SO₄ + 吸附态 CO: 虚线: 0.5 mol・L⁻¹H₂SO₄ + 溶液饱和 CO

以及正向电位扫描中 0.5 V 附近 nm-Pt_n/Au 氧化电流 峰和负向电位扫描时 0.4 V 附近相应的还原电流峰. 电位高于 1.1 V 时出现 Au 的氧化电流和负向电位扫 描中位于 0.94 V 的对应 Au 氧化物的还原电流峰. 图 2 中虚线为溶液中含有 CO 的 CV 曲线,可观察到当 电位高于 0.05 V,溶液中 CO 的氧化即可进行,给出 的氧化电流变化特征与实线第 1 周 CV 曲线类似,但 电流明显增加.

2.3 电化学原位 FTIR 反射光谱研究结果

首先在 COad 稳定的研究电位 Est从-0.225 V 逐 步升高到-0.075 V)采集一系列单光束光谱, 最后在 CO_{ad} 完全氧化的参考电位 $E_{R}(1.00 V)$ 下采集参考单 光束光谱,得到的结果光谱示于图 3 中. 可观察到 3 个负向单极谱峰、分别位于 2050、1980 及 1820 cm⁻¹ 附近. 根据文献^[12,13], CO 在本体 Pt 电极表面吸附主 要生成线型吸附态(COL)和少量桥式吸附态(COB)物 种,分别在 2070 和 1860 cm⁻¹ 附近给出红外吸收峰. 与此对照,图中光谱中的1980和1820 cm⁻¹ 附近的谱 峰可分别指认为 COL 和 COB 的红外吸收, 与吸附在 本体 Pt 电极上的光谱特征(图 3(b))相比, 可知吸附在 Pt 纳米粒子上的 CO_L 和 CO_B 的红外吸收被显著增强. 由于 CO 的吸附抑制氢在 Pt 电极上的吸附,从 0.5 mol·L⁻¹ H₂SO₄ 中本体 Pt 和 nm-Pt_n/Au 电极 CV 曲线 积分得到氢吸脱附电量 $Q_{\rm H}$ 正比于 CO 在两种电极表 面饱和吸附的量,因此 nm-Pt_n/Au 电极上吸附态 CO 红外吸收增强因子AIR可由下式计算:

1699

图 3 nm-Pt_n/Au 电极 CO 吸附的 MS-FTIR 谱, 0.5 mol/L H₂SO₄, E_R = 1.00 V, E_S 从-0.225 ~ -0.1 V

$$\Delta_{\rm IR} = \frac{\frac{A_{\rm CO_{ad}}^{\rm Pt_n}}{Q_{\rm H}^{\rm Pt}}}{\frac{A_{\rm CO_{ad}}^{\rm Pt}}{Q_{\rm H}^{\rm Pt}}} = \frac{A_{\rm CO_{ad}}^{\rm Pt_n}}{Q_{\rm H}^{\rm Pt_n}} \cdot \frac{Q_{\rm H}^{\rm Pt}}{A_{\rm CO_{ad}}^{\rm Pt}}, \qquad (1)$$

其中 $Q_{\rm H}^{\rm Pt}$ 和 $Q_{\rm H}^{\rm Pt_n}$ 分别为本体 Pt 和 nm-Pt_n/Au 电极表面 的氢吸脱附电量, $A_{\rm CO_{ad}}^{\rm Pt_n}$ 分别为两电极上吸附 态 CO 红外谱峰的积分强度.由此计算出 $\Delta_{\rm IR}$ 为 48. 从图 3 中光谱 b(本体 Pt 电极)中可测得 CO_L 谱峰的半 峰宽为 13 cm⁻¹, 而在 nm-Pt_n/Au 电极上 CO_L 的半峰 宽增加到 61 cm⁻¹.光谱中位于 2050 cm⁻¹ 附近的谱峰 可初步指认为纳米 Pt 粒子上孪生吸附态 CO(CO_T)的 红外吸收.孪生态 CO 有对称和反对称两种振动模式, 它的红外吸收通常给出一对红外峰,两个谱峰相差

1700

约 70 cm^{-1[14]}. 在图 3 光谱中 CO_T 的另一位于较低波数的谱峰可能与 CO_L 峰部分重叠,这也可能是导致 位于 1980 cm⁻¹附近的谱峰半峰宽显著增加的一个原因.为了进一步显示 CO吸附在 Pt 纳米微粒上的红外 特性,在图 3 中还给出了开路电位下(即无外加电压,电极体系保持固/液界面的平衡电压,约为 0.25 V)、 nm-Pt_n/Au 表面无 CO 吸附和 Au 表面只有 PVC 膜 (PVC/Au)时获得的光谱.可以看到在 PVC/Au 电极上 无任何 CO 吸附;当 nm-Pt_n/Au 上无 CO 吸附时,可 观察到非常微弱的 CO_L 谱峰,归因于在制备 Pt 纳米 微粒时产生的少量吸附于 Pt 纳米微粒上 CO 的红外 吸收.而在开路电位下得到的谱图与其他原位光谱 类似,但 CO_T 谱峰强度较小,可能在此电位下已开始 氧化.

随着 $E_{\rm s}$ 从-0.225 V 逐步升高, CO_T, CO_L, CO_B 3 个谱峰的峰位都发生移动.图 4(a)分别为 CO 的线 型、桥式和孪生 3 种吸附态的红外吸收峰位随 $E_{\rm s}$ 的 变化、可以看到三者都呈线性变化.从图中拟合直线 的斜率得到 Stark 系数, CO_L 和 CO_B 分别为 55(本体 Pt上为 30 cm⁻¹ · V⁻¹)和 24 cm⁻¹ · V⁻¹, 而 CO_T给出负 的 Stark 系数,为-6.9 cm⁻¹ · V⁻¹.另外, CO_T, CO_L, CO_B 3 个谱峰的强度也随着 $E_{\rm s}$ 的升高而发生变化, 图 4(b)给出了三种吸附态 CO 红外吸收强度随 $E_{\rm s}$ 的升高 而线性降低,而桥式 CO 的强度随 $E_{\rm s}$ 升高线性增加. 三者的强度变化表明在 nm-Pt_n/Au 上, CO 的 3 种吸附 模式会随 $E_{\rm s}$ 的变化而发生转化,即 CO_T 和 CO_L向 CO_B转化.这些结果与 CO在本体 Pt 电极上吸附的红 外特征显著不同,显示了 Pt 纳米微粒的特殊性质.

3 结论

本文利用化学还原法制备了平均粒度为 2.5 nm 的 Pt 纳米微粒. Pt 纳米微粒电极的电化学循环伏安结 果显示其吸附态 CO 的氧化电流峰较宽,表明 CO 在 该纳米微粒上的吸附状态较多.通过原位 FTIR 反射 光谱观察到吸附在 Pt 纳米微粒上的孪生态 CO 物种、 以及线型和孪生态 CO 向桥式 CO 的转化过程.研究 发现在 Pt 纳米微粒电极上,吸附态 CO 有显著的增强 红外吸收,计算得到其红外吸收增强因子为 48;半峰 宽明显增加, CO_L 谱峰的半峰宽增加 4 倍,达到 61 cm⁻¹; CO_L 的 Stark 系数从本体 Pt 电极上的 30 增到 55 cm⁻¹• V⁻¹. 这些结果表明 Pt 纳米微粒的性质与本

www.scichina.com

体 Pt 的性质有很大的差异,表现出纳米 Pt 的特殊性能. Pt 纳米材料的深入研究对探索新型电催化剂以及 认识纳米尺度上铂族金属的性质具有重要意义.

致谢 感谢中国科学院化学研究所万立骏研究员在 TEM 测试中给予的诸多帮助.本工作为国家自然科学基金资助项目(批准号: 29833060, 20021002).

参考文献

- Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999, 402(6760): 393~395
- 2 Lue J T. A review of characterization and physical property studies of metallic nanoparticles. J Phys Chem Solids, 2001, 62(9-10): 1599~1612
- 3 陈治、孙世刚、广楠、等,纳米钯铂合金膜电极上 CO 吸附的异常红外效应,科学通报,2001,46(10):806~808
- 4 Jiang Y X, Sun S G, Ding N. Novel phenomenon of enhancement of IR absorption of CO adsorbed on nanoparticles of Pd confined in supercages of Y-zeolite. Chem Phys Lett, 2001, 344(17): 463~470
- 5 Lu G Q, Sun S G, Cai L R, et al. *In situ* FTIR spectroscopic studies of adsorption of CO, SCN⁻, and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: abnormal infrared effects (AIREs). Langmuir, 2000, 16(2): 778–786
- 6 Henglein A. Colloidal Palladium nanoparticles: reduction of Pd(II) by H₂; PdcoreAushellAgshell particles. J Phys Chem B, 2000, 104(29): 6683~6685
- 7 Chen C W, Takezako T, Yamamoto K, et al. Poly (Nvinylisobutyramide)-stabilized platinum nanoparticles: synthesis and temperature-responsive behavior in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169(1-3): 107~116
- 8 Yu W Y, Liu H F, Liu M H, et al. Selective hydrogenation of citronellal to citronellol over polymer-stabilized noble metal colloids. Reactive & Functional Polymers, 2000, 44(1): 21~29
- 9 Yu W Y, Liu H F, Tao Q. Modification of metal cations to metal clusters in liquid medium. Chem Commun, 1996, 15: 1773~1774
- Hirai H, Nakao Y, Toshima N. Preparation colloidal transition metals in polymers by reduction with alcohols or ethers. J Macromol Sci-Chem, 1979, A13(6): 727~750
- 11 Sun S G, Yang D F, Tian Z W. In situ FTIR studies on the adsorption and oxidation of n-propanol at a platinum electrode in sulphuric acid solutions. J Electroanal Chem, 1990, 289(1-2): 177~189
- 12 Kunimatsu K, Seki H, Golden W G, et al. Electrode/electrolyte interphase study using polarization modulated FTIR reflectionabsorption spectroscopy. Surface Science, 1985, 158(1-3): 596~608
- 13 Beden B, Bewick A, Lamy C. A study by electrochemically modulated infrared reflectance spectroscopy of the electrosorption of formic acid at a platinum electrode. J Electroanal Chem, 1983, 148(1): 147~160
- 14 Lin W F, Sun S G. In situ FTIR investigations of surface processes of Rh electrode—novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution. Electrochimica Acta, 1996, 41(6): 803~809

(2002-05-29 收稿, 2002-09-10 收修改稿)

1701