90 research outputs found

    Markov Bases for Typical Block Effect Models of Two-way Contingency Tables

    Get PDF
    Markov basis for statistical model of contingency tables gives a useful tool for performing the conditional test of the model via Markov chain Monte Carlo method. In this paper we derive explicit forms of Markov bases for change point models and block diagonal effect models, which are typical block-wise effect models of two-way contingency tables, and perform conditional tests with some real data sets.Comment: 16 page

    離散統計モデルの条件付き推測問題に対する代数統計的手法

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 竹村 彰通, 東京大学教授 駒木 文保 東京大学教授 山西 健司, 東京大学准教授 平井 広志, 統計数理研究所教授 栗木 哲University of Tokyo(東京大学

    A Transponder Aggregator with Efficient Use of Filtering Function for Transponder Noise Suppression

    Full text link
    Colorless, directionless, and contentionless reconfigurable optical add/drop multiplexing (CDC-ROADM) provides highly flexible physical layer network configuration. Such CDC-ROADM must operate in multiple wavelength bands which are being increasingly implemented in optical transmission systems. The operation in C+L bands requires switch devices used in CDC-ROADM to also be capable of multiband operation. Recent studies on wavelength division multiplexing (WDM) systems have pointed out the impact of amplified spontaneous emission (ASE) noise generated by signals of different wavelengths, which causes OSNR degradation. Therefore, it is desirable to filter out the ASE noise from different transponders when multiplexing multiple wavelengths at the transmitter side, especially in a system with non-wavelength selective combiners such as directional couplers and multicast switches. The use of transponder aggregators with filtering functions, such as the M x N wavelength selective switch (WSS), is preferable for this filtering. However, the downside of these devices is that it is difficult to provide economical multiband support. Therefore, we propose an economical transponder aggregator configuration by allowing a certain amount of ASE superposition and reducing the number of filtering functions. In this paper, we fabricated a prototype of the proposed transponder aggregator by combining silica-based planar lightwave circuit technology and C+L band WSS, both commercially available, and verified its feasibility through transmission experiments. The novel transponder aggregator is a practical solution for a multiband CDC-ROADM system with improved OSNR performance.Comment: 10 pages, 11 figures. Submitted to IEEE Journal of Lightwave Technology for possible publicatio

    The heterotrimeric G-protein complex modulates light sensitivity in arabidopsis thaliana seed germination

    Get PDF
    Release of dormancy and induction of seed germination are complex traits finely regulated by hormonal signals and environmental cues such as temperature and light. The Red (R):Far-Red (FR) phytochrome photoreceptors mediate light regulation of seed germination. We investigated the possible involvement of heterotrimeric G-protein complex in the phytochrome signaling pathways of Arabidopsis thaliana seed germination. Germination rates of null mutants of the alpha (Gα) and beta (Gβ) subunits of the G-protein (Atgpa1-4 and agb1-2, respectively) and the double mutant (agb1-2/gpa1-4) are lower than the wildtype (WT) under continuous or pulsed light. The Gα and Gβ subunits play a role in seed germination under hourly pulses of R lower than 0.1 μmol m -2 s -1 whereas the Gβ subunit plays a role in higher R fluences. The germination of double mutants of G-protein subunits with phyA-211 and phyB-9 suggests that AtGPA1 seems to act as a positive regulator of phyA and probably phyB signaling pathways, while the role of AGB1 is ambiguous. The imbibition of seeds at 4°C and 35°C alters the R and FR light responsiveness of WT and G-protein mutants to a similar magnitude. Thus, Gα and Gβ subunits of the heterotrimeric G-protein complex modulate light induction of seed germination by phytochromes and are dispensable for the control of dormancy by low and high temperatures prior to irradiation. We discuss the possible indirect role of the G-protein complex on the phytochrome-regulated germination through hormonal signaling pathways.Fil: Botto, Javier Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Ibarra, Silvia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Jones, Alan M.. University of North Carolina; Estados Unido

    Spatial Evolution of Wave‐Particle Interaction Region Deduced From Flash‐Type Auroras and Chorus‐Ray Tracing

    Get PDF
    In-situ observations of spatial variations of the wave-particle interaction region require a large number of satellite probes. As an alternative, flash-type auroras, a kind of pulsating aurora, driven by discrete chorus elements, can be used to investigate the interaction region with a high spatial resolution. We estimated the spatial extent of wave-particle interaction region from ground-based observations of flash aurora at Gakona (62.39°N, 214.78°E), Alaska at subauroral latitudes, and found that the auroral expansion was predominantly to the low-latitude side. The spatial displacement is thought to be caused by the propagation effects of chorus waves in the magnetosphere. Using ray tracing analysis to take into account chorus wave propagation, we reconstructed the spatiotemporal evolution of the volume emission rate and confirmed that the predominant expansion is toward the lower-latitude side in the ionosphere. This study shows that chorus wave propagation in the magnetosphere gives new insight for characterizing the transverse size (across the geomagnetic field line) of wave-particle interaction regions. The calculated spatial scale of the column auroral emission shows a correlation with the magnetic latitude of the resonance region at magnetic latitudes within 10° of the equatorial plane of the magnetosphere. Our results suggest that the spatial scale of a flash aurora is indirectly related to the chorus amplitude because the latitudinal range of the wave-particle interaction is important for the growth of wave amplitude

    Magnetic Conjugacy of Pc1 Waves and Isolated Proton Precipitation at Subauroral Latitudes: Importance of Ionosphere as Intensity Modulation Region

    Get PDF
    Pc1 geomagnetic pulsations, equivalent to electromagnetic ion cyclotron waves in the magnetosphere, display a specific amplitude modulation, though the region of the modulation remains an open issue. To classify whether the amplitude modulation has a magnetospheric or ionospheric origin, an isolated proton aurora (IPA), which is a proxy of Pc1 wave-particle interactions, is compared with the associated Pc1 waves for a geomagnetic conjugate pair, Halley Research Base in Antarctica and Nain in Canada. The temporal variation of an IPA shows a higher correlation coefficient (0.88) with Pc1 waves in the same hemisphere than that in the opposite hemisphere. This conjugate observation reveals that the classic cyclotron resonance is insufficient to determine the amplitude modulation. We suggest that direct wave radiation from the ionospheric current by IPA should also contribute to the amplitude modulation
    corecore