
The Heterotrimeric G-protein Complex Modulates Light 
Sensitivity in Arabidopsis thaliana Seed Germination

Javier F. Botto*,1, Silvia Ibarra1, and Alan M. Jones2

1IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de 
Investigaciones Científicas y Técnicas, Buenos Aires, Argentina

2Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC

Abstract

Release of dormancy and induction of seed germination are complex traits finely regulated by 

hormonal signals and environmental cues such as temperature and light. The Red (R):Far-Red 

(FR) phytochrome photoreceptors mediate light regulation of seed germination. We investigated 

the possible involvement of heterotrimeric G-protein complex in the phytochrome signaling 

pathways of Arabidopsis thaliana seed germination. Germination rates of null mutants of the 

alpha (Gα) and beta (Gβ) subunits of the G-protein (Atgpa1-4 and agb1-2, respectively) and the 

double mutant (agb1-2/gpa1-4) are lower than the wildtype (WT) under continuous or pulsed 

light. The Gα and Gβ subunits play a role in seed germination under hourly pulses of R lower than 

0.1 μmol m−2 s−1 whereas the Gβ subunit plays a role in higher R fluences. The germination of 

double mutants of G-protein subunits with phyA-211 and phyB-9 suggests that AtGPA1 seems to 

act as a positive regulator of phyA and probably phyB signaling pathways, while the role of AGB1 

is ambiguous. The imbibition of seeds at 4°C and 35°C alters the R and FR light responsiveness of 

WT and G-protein mutants to a similar magnitude. Thus, Gα and Gβ subunits of the heterotrimeric 

G-protein complex modulate light induction of seed germination by phytochromes and are 

dispensable for the control of dormancy by low and high temperatures prior to irradiation. We 

discuss the possible indirect role of the G-protein complex on the phytochrome-regulated 

germination through hormonal signaling pathways.

INTRODUCTION

Several intrinsic and environmental cues are involved in the complex regulation of seed 

germination. Light is a crucial environmental factor regulating the release of dormancy and 

the induction of germination (1). The Red (R):Far-Red (FR) phytochrome photoreceptors 

mediate the germination responses to light in Arabidopsis thaliana seeds (2). Phytochromes 

comprise a five-member family of photochromic proteins (phyA → E), which each exist in 

two photoreversible forms: the Pr form efficiently absorbs R photons and the Pfr form, 
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which is considered the physiological active form, efficiently absorbs FR photons. Because 

of some spectral overlap between the Pr and Pfr forms, FR irradiation establishes a 

photoequilibrium of the two forms (i.e. Pfr:P > 0, where P = Pr + Pfr). The importance of 

phytochromes in the regulation of germination was first demonstrated by a classical 

experiment of R:FR photoreversibility in lettuce seeds (3). More recently, it was established 

that some seeds with high light sensitivity germinate by very low levels of Pfr:P established 

by a single FR pulse (4,5). The ecological significance of the acquisition of high light 

sensitivity in buried seeds of many weedy species is to be able to compete for resources 

sooner after germination is promoted by millisecond exposures to light during soil 

cultivation (6,7).

Light-inductive responses are classified into two groups depending on the established 

photoequilibrium of the phytochromes within the seed. The very-low-fluence response 

(VLFR) is induced even by a saturating pulse of FR. The low-fluence response (LFR) 

requires higher Pfr:P ratios to induce germination (8). PhyA is the only phytochrome 

member that is responsible for the VLFR (9,10) and primarily phyB, but also phyE to a 

lesser extent, modulate seed germination at higher Pfr:P through the LFR (11,12). Pfr 

increases the level of gibberellins (GAs) by transcriptional regulation of GA anabolic and 

catabolic genes (13–16) and by degradation of DELLA proteins (17–19). In addition, the 

active form of phyA and phyB inhibits PIL5, a phytochrome-interacting basic helix-loop-

helix transcription factor, acting as a negative regulator of seed germination (20,21). The Pfr 

form of the phytochromes promotes germination through a decrease in abscisic acid (ABA), 

in part by transcriptional repression of ABA anabolic genes and transcriptional activation of 

an ABA catabolic gene (21,22).

The mechanisms by which signals are integrated to control germination remain unclear. One 

possible mechanism involves coupling of and cross-talk between signals by heterotrimeric 

G-protein because many signaling pathways controlling seed germination are compromised 

in Arabidopsis mutants lacking the G-protein complex (23–25). The Arabidopsis genome 

contains genes encoding only one canonical G-protein alpha (Gα) subunit (AtGPA1, 

hereafter noted only as GPA1), one G-protein beta (Gβ) subunit (AGB1) and at least two G-

protein gamma subunits (AGG1 and AGG2) (26). Studies on the null alleles of GPA1 and 

AGB1 suggest that plants use heterotrimeric G-protein signaling in many growth and 

developmental processes (26). Germination of the gpa1 null mutant seeds is hypersensitive 

to glucose, sucrose and ABA, and hyposensitive to GAs and completely insensitive to 

brassinolide (BR) (25). Seeds of gcr1, a loss-of-function of a candidate G-protein-coupled 

receptor, also show reduced germination in GAs and BR (23). However, additive effects in 

the double and triple mutants (gcr1, gpa1 and agb1) suggest that GCR1 acts independently 

of the heterotrimeric G-protein promoting germination (23). Furthermore, there is no 

evidence to date that GCR1 controls the active state of GPA1. In accordance with these 

results, Arabidopsis transgenic seeds ectopically overexpressing GCR1 germinate at a higher 

rate than wildtype (WT) (27). Pandey et al. (24) concluded that AGB1, GPA1 and GCR1 all 

act in the same pathway of ABA and glucose-repression of germination. A yeast two-hybrid 

screen identified a GPA1-interacting protein as AtPirin1 (28). An Atpirin1 T-DNA-insertion 

Botto et al. Page 2

Photochem Photobiol. Author manuscript; available in PMC 2015 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutant displays phenotypes similar to those of the gpa1 mutant including reduced 

germination in the absence of stratification and ABA inhibition of germination (28).

Therefore, the potential participation of the G-protein complex in the phytochrome 

regulation of seed germination remains an open possibility. Evidence presented here 

demonstrates that the heterotrimeric G-protein complex modulates light induction of 

Arabidopsis seed germination.

MATERIALS AND METHODS

Plant material and growth conditions

Arabidopsis thaliana plants were grown in a continuous white light (WL) chamber at 22–

24°C for bulking seed. For germination experiments, seeds were stored in open eppendorfs 

inside a closed box containing silica gel and kept in darkness at room temperature between 3 

and 12 months. Seeds of gpa1-4, agb1-2 and agb1-2/gpa1-4 used in our experiments were in 

the Col background and were described previously (29). The phyA-211 (CS6223) and 

phyB-9 (CS6217) mutants were from the ABRC Arabidopsis Stock Center. The gpa1-4, 

agb1-2, phyA-211 and phyB-9 alleles were used for generating gpa1-4/phyA-211, agb1-2/

phyA-211, gpa1-4/phyB-9 and agb1-2/phyB-9 double mutants. WT and mutant plants were 

cultivated, harvested and stored side-by-side to preclude growth condition, maternal and 

after-ripening effects on germination; these collections are designated as matched. Results 

were obtained using four matched populations to confirm genuine differences in the light 

responses of genotypes.

Germination experiments

Twenty-four seeds were sown in each clear plastic box (42 × 35 × 20 mm) containing 3 mL 

of 0.8% w/v agar (Chemit Argentina SRL, Buenos Aires). The boxes, wrapped in black 

plastic sheets, were incubated for 3 days at 4°C prior to irradiation (unless otherwise 

indicated in the text). Depending on the experiment, seeds were irradiated by continuous, 

repetitive hourly pulses or a single saturating pulse of light. After a pulse of light, seeds 

were incubated in darkness for 3 days at 25°C. Germination was scored by the presence of a 

protruding radical. Handling of the incubated seeds was performed under dim green light as 

described previously (9,11).

Light treatments

Continuous WL was provided by Philips TLD30W/54 fluorescent tubes (Phillips Electric, 

Inc., Brazil). Continuous R was provided by Philips PLC Electronic 11 W lamps (Phillips 

Electric, Inc., Holland) in combination with one yellow, one orange and one red acetate 

filter (La Casa del Acetato, Buenos Aires, Argentina) (9,11). Continuous FR was achieved 

using incandescent lamps in combination with a water filter, a red acetate filter and six 2 

mm-thick blue acrylic filters (La Casa del Acetato, Buenos Aires, Argentina) (9,11). 

Continuous blue light (BL) was provided by Philips TLD30W/54 fluorescent tubes (Phillips 

Electric Inc., Brazil) in combination with two pale-blue acetate filters (La Casa del Acetato). 

Dose dependency experiment was performed using hourly R pulses of 3 min in combination 

with neutral-density filters for 3 days. A series of calculated phytochrome photoequilibria 
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were obtained with a single saturating light pulse. Details of the light sources for each 

photoequi-librium were as described earlier (9,11).

RESULTS AND DISCUSSION

G-protein complex modulates continuous and inductive light-induced germination of 
Arabidopsis seeds

To determine the possible participation of the heterotrimeric G-protein complex in the light 

induction of germination, we scored germination of WT, gpa1-4, agb1-2 and agb1-2/gpa1-4 

seeds under continuous WL, R, BL, FR or darkness (Fig. 1). WT and gpa1-4 seeds 

germinated around 25% while only 10% of agb1-2 and agb1-2/gpa1-4 seeds germinated in 

darkness. Seeds of agb1-2, gpa1-4 and agb1-2/gpa1-4 germinated at a rate that was 

statistically significantly less than WT under continuous BL and FR. Under continuous R, 

only agb1-2/gpa1-4 seeds germinated significantly less than WT. No statistically significant 

differences between genotypes were detected under continuous WL.

Under very low fluence of pulsed R lower than 0.1 μmol m−2 s−1 (3 min h−1), single and 

double mutant seeds of the G-protein complex germinated at a rate lower than WT (Fig. 2). 

At higher fluences of hourly pulsed R (between 0.1 and 5 μmol m−2 s−1), only agb1 seeds 

carrying the agb1 null allele, regardless of the presence of a null allele of GPA, germinated 

less than WT, suggesting a different role for GPA1 and AGB1 subunits of the G-protein 

complex in the induction of germination by light.

To confirm the modulation of G-protein of phytochrome induction of germination, we tested 

whether the Gα and Gβ subunits of the heterotrimeric G-protein complex regulate the 

promotion of germination under different Pfr:P photoequilibria. Seeds of WT, gpa1-4, 

agb1-2 and agb1-2/gpa1-4 were irradiated with a single mixed R + FR saturated pulse that 

established a series of calculated phytochrome photoequilibria (11). WT seeds incubated for 

1 day at 4°C germinated 30% with an FR pulse (i.e. Pfr:P = 3%) and 80% with an R pulse 

(i.e. Pfr:P = 87%). Intermediate and increasing values of germination rate were observed for 

20%, 33% and 61% Pfr:P (Fig. 3A). A biphasic light germination response was observed for 

WT seeds. The reduced first phase (i.e. VLFR) was detected between darkness and 20%, 

and a significant second phase (i.e. LFR) between 33% and 87% Pfr:P. Seeds of gpa1-4, 

agb1-2 and agb1-2/gpa1-4 lacked the VLFR and the LFR was steeper than for WT (Fig. 

3A). Increasing stratification promoted WT and mutant seeds to germinate at higher rates 

but with the same relative light sensitivities (Fig. 3B). The germination rate of WT seeds 

was higher than 80% at each established photoequilibrium indicating that chilling abrogated 

the light requirement for germination. However, less than 50% of mutant seeds germinated 

at Pfr:P photoequilibria lower than 33% and the germination rate increased to 100% at 66% 

Pfr:P. These results confirm that the Gα and Gβ subunits of the G-protein complex modulate 

Pfr:P sensitivity responses in Arabidopsis seeds.

To investigate the role of G-protein complex subunits in the signaling pathways of phyA and 

phyB, we generated double mutant seeds of Gα a and Gβ subunits (specifically, gpa1-4 and 

agb1-2) and phytochromes (specifically, phyA-211 and phyB-9). We incubated the seeds for 

1 day at 4°C and then irradiated them with a single mixed R + FR saturated pulse to 

Botto et al. Page 4

Photochem Photobiol. Author manuscript; available in PMC 2015 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



establish different levels of Pfr:P into the seeds (Fig. 4). WT seeds displayed significant R 

and FR sensitivity responses: 70% of the seeds showed an R:FR response, while 25% of the 

seeds germinated with an FR pulse with respect to the dark control. Consistent with phyA 

mediation of the VLFR (9), nearly 100% of the phyA-211 seeds germinated following an R 

pulse but failed to germinate with an FR pulse. phyB-9 seeds treated with an R pulse 

displayed reduced germination consistent with phyB being the principal phytochrome 

mediating the R:FR reversible response (11). At very low photoequilibrium of Pfr:P (i.e. FR 

pulse), gpa1-4/phyA-211 and agb1-2/phyA-211 seeds germinated at the same rate as 

phyA-211 seeds indicating that GPA1 and AGB1 act as a positive regulator downstream of 

phyA signaling. The role of G-protein subunits in the phyB signaling pathway is less clear. 

The germination of gpa1-4/phyB-9 seeds was similar to that of phyB-9 seeds at Pfr:P ≤ 61%, 

however agb1-2/phyB-9 seeds germinated at a rate significantly higher than that of phyB-9 

seeds at Pfr:P > 33% (Fig. 4). The results suggest that GPA1 could be operating positively 

downstream of phyB signaling at least at intermediate photoequilibria, while AGB1 shows a 

negative epistatic interaction in the range of action of the phyB.

Based on the results shown in Figs. 1 and 3 using the same populations of seeds for 

comparison, the inhibitory effects of continuous BL likely occur through the phytochrome 

signaling system. The inhibition of germination under BL shown in Fig. 1 correlates with 

the values obtained using R + FR mixture filters that established a Pfr:P ~40%. In Fig. 3, G-

protein mutant seeds germinated, on average, between 100% and 50% less than WT at Pfr:P 

~0.4 depending on the total time of stratification (26% vs 55% and 57% vs 87% for seeds 

chilling 1 or 3 days, respectively). Consistent with previous reports, we conclude that the 

induction of Arabidopsis seed germination in the BL region of the spectrum is phyA 

dependent (2,10).

The heterotrimeric G proteins do not mediate temperature control of seed dormancy

Dormancy can be progressively reduced by the influence of low temperatures modulating 

the light responses that initiate seed germination (2,30). In addition, the release of dormancy 

may be in certain cases a reversible process by which seeds can become dormant again when 

the conditions for germination are not favorable such as prolonged incubation in darkness or 

at a high temperature (31,32). The observation that under some light conditions, G-protein 

mutants have the same germination rate as WT suggests that the mutants are not impaired in 

germination per se. Rather these observations support the hypothesis that G-proteins 

modulate light regulation of germination specifically, and act independent of other factors 

controlling the dormancy status. In this context, we evaluated the possible role of Gα and Gβ 

subunits in the modulation of light responses of the imbibed seeds under chilling or high 

temperature regime. Seeds of WT, gpa1-4, agb1-2 and agb1-2/gpa1-4 were chilled at 4°C 

between 0 and 7 days before irradiation with an FR or R pulse. The germination rates were 

similar for WT and G-protein mutant seeds after an R pulse. On average, 70% of the seeds 

germinated without chilling and after an R pulse. Chilling followed by an R pulse increased 

germination to nearly 100% (Fig. 5). An FR pulse reduced germination to approx. 10% 

regardless of the amount of chilling. In darkness, the imbibition of seeds at low temperatures 

increased the germination rate compared with the FR pulse-treated seeds with the exception 

of the agb1-2 mutant suggesting a potential role of the AGB1 subunit in the release of 
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dormancy by chilling. The higher percentages of germination in darkness with respect to FR 

is likely to reflect a higher amount of Pfr (than those established by an FR pulse) in dry 

seeds originating from plants growth in WL environments characterized by a high R:FR 

ratio (2). Imbibition of seeds at 35°C followed by chilling for 3 days at 4°C decreased the 

germination of WT and G-protein mutant genotypes under R, FR or darkness (Fig. 5). These 

results indicate that Gα and Gβ subunits do not participate in the control of dormancy by 

low and high temperatures prior to light treatment in Arabidopsis seeds. However, Shikha 

Misra et al. (33) reported that transgenic tobacco seeds overexpressing Gα and Gβ subunits 

of Pisum sativum germinated at a higher rate than WT at 37 and 42°C suggesting than the 

effect of heat on germination is species related or that ectopic misexpression of the pea G-

proteins confers a neomorphic phenotype.

The role of the G-protein complex in the light transduction pathway is dependent on the 

quality of light, the stage of development and the cell/tissue type. Previous and the present 

works demonstrate that the light regulation of the hypocotyl length in the early seedling 

development does not involve the G-protein complex. As shown in Supporting Information 

Fig. S1 and by Jones et al. (29), null mutations in Gα and Gβ subunit genes do not alter R 

and FR inhibition of hypocotyl growth. In contrast, BL regulation of early development does 

involve the G-protein complex. Etiolated seedlings required the putative G-protein-coupled 

receptor (GCR1) and the GPA1 subunit for phenylalanine production after a short single 

pulse of BL (34). Previous reports established that GCR1, GPA1 and AGB1 act in concert in 

or upon the ABA signaling pathway (24), and GPA1 could be potentiating the GA signaling 

pathway during seed germination (25). Light signals transduced by the active Pfr form of 

phytochromes are integrated into the GA biosynthesis pathways through a positive transcript 

regulation of AtGA3ox1 and AtGA3ox2 genes (14). Thus, it is plausible that GPA1 and 

AGB1 increase the transcript level of AtGA3ox1 and AtGA3ox2 through the phytochrome 

signaling pathways. We also speculate that the nutritional state of the seed may modulate 

light regulation of germination as a strategy to compete for resources or to assure 

germination success. For example, seeds having a low carbohydrate store may require more 

light before germination is attempted thus reducing the chance of arrested development 

occurring before the seedling can reach carbon autotrophy. The heterotrimeric G-protein 

complex with its cognate 7-transmembrane Regulator of G Signaling Protein (AtRGS1) is 

clearly ensconced in the sugar sensing pathway in plant cells (35–40), thus the G-protein 

complex at large (G protein complex associated partners, candidate sugar receptor AtRGS1) 

could aptly serve to modulate the light perception machinery based on the nutritional state of 

the imbibed seed.

In summary, the results shown in Figs. 1–4 all indicate that both Gα and Gβ subunits or the 

intact heterotrimer are required to promote seed germination by light. The results of Figs. 1 

and 2 demonstrate that GPA1 and AGB1 modulate germination under continuous and 

inductive light conditions. Data of Figs. 3 and 4 show that GPA1 and AGB1 act as a positive 

modulator of the phyA signaling pathway. However, conflicting data of Fig. 4 suggest that 

AGB1 may be a negative modulator under certain conditions, thus the role of AGB1 in 

PhyB signaling is less clear. It is likely that the nutrient state of the seed affects light 

sensitivity through the action of the G-protein complex, or that other stable phytochromes 
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(i.e. phyE) could promote the R:FR reversible promotion of germination in these conditions. 

New experiments using additional phytochrome mutants are required to evaluate additional 

interactions between the G-protein complex and other phytochromes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Germination response for WT, gpa1.4, agb1.2 and agb1.2/g-pa1.4 seeds under continuous 

white light (WL), red (R), blue light (BL), far-red (FR) and darkness (D). Seeds were stored 

at 25°C for 10 months and then stratified for 3 days at 4°C before light treatments. 

Germination was scored at 3 days at 25°C. Asterisks indicate significant differences with 

respect to wildtype at P < 0.05 (Tukey test). Shown are the averages for percent germination 

± SEM of five to eight independent samples.
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Figure 2. 
Hourly red (R) fluence germination response for WT, gpa1.4, agb1.2 and agb1.2/gpa1.4 

seeds. Seeds were stored at 25°C for 10 months and then stratified for 3 days at 4°C before 

hourly pulses of R at the indicated fluence rate (3 min h−1 for 3 days). Germination for 

hourly pulses of far-red (FR) is shown as control. Germination was scored at 3 days at 25°C. 

Shown are the averages for percent germination ± SEM of three to eight independent 

samples.
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Figure 3. 
Calculated Pfr/P (%) germination response for WT, gpa1.4, agb1.2 and agb1.2/gpa1.4 

seeds. Germination in darkness is shown as control. Seeds were stored at 25°C for 14 

months and then stratified for 1 (A) or 3 days (B) at 4°C as indicated. After stratification, 

seeds were irradiated to establish the indicated photoequilibria as described in Materials and 

Methods and scored for germination after 3 days at 25°C in darkness. Shown are the 

averages for percent germination ± SEM of three to eight independent samples.
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Figure 4. 
Calculated Pfr/P (%) germination response for WT, gpa1.4, agb1.2, phyA211, phyB9, 

phyA211/gpa1.4, phyA211/agb1.2, phyB9/gpa1.4 and phyB9/agb1.2 seeds. Germination in 

darkness is shown as control. Seeds were stored at 25°C for 4 months and then stratified for 

1 day at 4°C. After stratification, seeds were irradiated with a pulse of the indicated light 

(see Fig. 3) and scored for germination after 3 days at 25°C in darkness. Before cold 

imbibition, 2 h imbibed seeds were irradiated with a saturated pulse of FR (15 min) to 

establish a minimum photoequilibrium into the seeds. Shown are the averages for percent 

germination ± SEM of three independent samples.
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Figure 5. 
Chill and heat effects on the light germination response of WT, gpa1.4, agb1.2 and agb1.2/

gpa1.4 seeds. Seeds were stored at 25°C for 6 months and then incubated at either 4°C for 

0–7 days, or at 35°C for 0–24 h following a red (R) or far-red (FR) pulse, or kept in 

darkness. Germination was scored after 3 days at 4°C. Shown are the averages for percent 

germination ± SEM of five to eight independent samples.
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