
博士論文 (要約)

Algebraic Statistical Methods for

Conditional Inference of Discrete

Statistical Models

(離散統計モデルの条件付き推測問題に対する
代数統計的手法)

小川 光紀

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTokyo Repository

https://core.ac.uk/display/196997268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright c⃝ 2014, Mitsunori Ogawa.



1

Testing and parameter estimation are fundamental topics in statistical inference. Tra-
ditionally these problems have mainly been solved by large sample approximation tech-
niques. However, such problems sometimes require conditional methods instead of the
usual statistical methods. In this thesis, therefore, we develop some algebraic statistical
methods for conditional inferences. This thesis consists of six chapters. Chapter 1 is
the introduction and it gives a general background of the themes which are dealt in this
thesis. In Chapters 2 and 3 we study the structure of the Markov bases and the Graver
bases for some concrete statistical models. In Chapter 2 we deal with the models for
two-way contingency tables considering the effects of subtables. We derive the explicit
forms of the corresponding Markov bases and apply them to numerical experiments with
real data sets. Chapter 3 is devoted to construct the Markov chain Monte Carlo (MCMC)
method for sampling from the conditional distribution of the beta model. We provide
the explicit description of the Graver basis for an undirected graph and apply it to the
MCMC procedure. In Chapter 4, a new procedure for generating a series of configurations
from an original configuration is defined, and we study the Markov degree of the resulting
configurations. In Chapter 5 we discuss the application of A-hypergeometric system for
computation of the normalizing constant of the conditional likelihood. The objective of
this application is the conditional maximum likelihood estimation, which is important
approach in parameter estimation in the presence of many nuisance parameters. Chapter
6 is the concluding remark of this thesis.
Algebraic statistics is a rapidly developing area that exploits algebraic geometry and

related techniques to solve problems in statistics. There are two seminal papers: Diaconis
and Sturmfels [7] and Pistone and Wynn [37]. The former developed an algebraic sampling
algorithm for the conditional distributions of discrete exponential families, whereas the
latter developed the experimental design theory in algebraic statistics. Both of them
applied Gröbner basis theory in polynomial rings to statistical problems. This connection
between statistics and computational algebra has inspired the numerous developments
and successful interactions between the two areas.
Goodness-of-fit tests for statistical models are usually performed by a large sample ap-

proximation to the null distribution of a test statistic. However, as shown in Haberman
[15], the large sample approximation may not be appropriate when the expected frequen-
cies are not large enough. In such cases it is desirable to use a conditional test based on
the exact distribution of the test statistic.
Diaconis and Sturmfels [7] developed an algebraic sampling algorithm for conditional

distributions based on the MCMC method. The set of moves, known as the Markov basis,
which guarantees the connectivity for every fiber, plays an essential role in their algorithm.
They established the equivalence between a Markov basis and a binomial generator for
the toric ideal arising from a statistical model of discrete exponential families. Thanks to
their algorithm, once we have a Markov basis for a given statistical model, we can perform
a conditional test for that model via the MCMC method. For the general background on
conditional tests and Markov bases, see Drton et al. [10].
Due to the equivalence of the Markov basis and the binomial generator for the toric

ideal, we can use the theory and algorithms for the Gröbner bases to calculate a Markov
basis. There exist algebraic softwares for computing Gröbner bases such as 4ti2 [1]. Since
the number of elements of Markov bases is usually too large, the computation of Markov
bases is often difficult in a practical amount of time. Furthermore, even if we obtain all
elements of a Markov basis, we need a large amount of memory to hold the elements of
them. Thus, it is desirable to derive the explicit forms of Markov bases and perform an
adaptive algorithm for the conditional test.
The structures of Markov bases for statistical models of contingency tables have been

studied by many researchers in algebraic statistics (e.g., Dobra and Sullivant [8], Aoki and
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Takemura [2], Rapallo [38], Hara et al. [19]). However, the structures of Markov bases are
complicated in general and the results on the structures of Markov bases are known only
for limited statistical models.
The first aim of this thesis is to derive the Markov bases for some statistical models of

two-way contingency tables considering the effect of subtables. It is a well-known fact that
the set of square-free moves of degree two (basic moves) forms the minimal Markov basis
for the complete independence model of two-way contingency tables. On the other hand,
when a subtable effect is added to the model, the set of basic moves does not necessarily
form a Markov basis. This problem is called the two-way subtable sum problem ([18]).
Hara et al. [17, 18] discussed Markov bases for the configuration for one subtable effect.

In [18] it is shown that the set of basic moves is a Markov basis if and only if the subtable
is a 2× 2-diagonal or triangular block. Ohsugi and Hibi [32] discussed the same problem
from an algebraic viewpoint. In this thesis we consider some statistical models with typical
block-wise subtable effects. For the model which has a quadratic Markov basis, we also
discuss the algebraic properties of the configuration arising from the model.
The second aim of this thesis is to construct the MCMC method with Graver bases

for conditional testing of the beta model of random graphs. Random graphs and their
applications to the statistical modeling of complex networks have been attracting much
interest in many fields, including statistical mechanics, ecology, biology and sociology
(e.g., Newman [27], Goldenberg et al. [13]). Statistical models for random graphs have
been studied since Solomonoff and Rapoport [46] and Erdős and Rényi [11] introduced
the Bernoulli random graph model. The beta model generalizes the Bernoulli model to a
discrete exponential family with vertex degrees as sufficient statistics. The beta model was
discussed by Holland and Leinhardt [22] in the directed case and by Park and Newman
[35], Blitzstein and Diaconis [3] and Chatterjee et al. [5] in the undirected case. The Rasch
model [39], which is a standard model in the item response theory, is also interpreted as a
beta model for undirected complete bipartite graphs. In this thesis we discuss the random
sampling of graphs from the conditional distribution in the beta model when the vertex
degrees are fixed.
In the context of a social network the vertices of the graph represent individuals and

their edges represent relationships between individuals. In the undirected case the graphs
are sometimes restricted to be simple, i.e., they contain no loops or multiple edges. The
sample size for such cases is at most the number of edges of the graph and is often small.
Thus, for the beta model with the restriction that graphs are simple, it is desirable to
perform a conditional testing procedure.
Random sampling of graphs with a given vertex degree sequence enables us to numer-

ically evaluate the exact distribution of a test statistic for the beta model. Blitzstein
and Diaconis [3] developed a sequential importance sampling algorithm for simple graphs
that generates graphs through operations on vertex degree sequences. In this thesis we
construct a Markov chain Monte Carlo algorithm for sampling graphs by using the Graver
basis for the toric ideal arising from the underlying graph of the beta model.
A set of graphs with a given vertex degree sequence is called a fiber for the underlying

graph of the beta model. A Markov basis for the underlying graph of the beta model is also
considered as a set of Markov transition operators connecting all elements of every fiber.
Petrović et al. [36] discussed some properties of the toric ideal arising from the model of
[22] and provided Markov bases of the model for small directed graphs. Properties of toric
ideals arising from undirected graphs have been studied in a series of papers by Ohsugi
and Hibi [29, 30, 31] and more recently by Hibi et al. [21].
The Graver basis is the set of primitive binomials of the toric ideal. Applications of the

Graver basis to integer programming are discussed in Onn [34]. Since the Graver basis
is a superset of any minimal Markov basis, the Graver basis is also a Markov basis and



3

therefore connects every fiber. When the graph is restricted to be simple, however, a
Markov basis does not necessarily connect all elements of every fiber. A recent result by
Hara and Takemura [16] implies that the set of square-free elements of the Graver basis
connects all elements of every fiber of simple graphs with a given vertex degree sequence.
Thus if we have the Graver basis, we can sample graphs from any fiber, with or without
the restriction that graphs are simple, in such a way that every graph in the fiber is
generated with positive probability.
In the sequential importance sampling algorithm of [3], the underlying graph for the

model was assumed to be complete. In our approach we can allow that some edges
are absent from the beginning (structural zero edges in the terminology of contingency
table analysis), such as the bipartite graph for the case of the Rasch model. Moreover,
our algorithm can be applied not only for sampling simple graphs but also for sampling
general undirected graphs without substantial adjustment. These are the advantages of
the Graver basis.
The Graver basis for small graphs can be computed by a computer algebra system

such as 4ti2. For even moderate-sized graphs, however, it is difficult to compute the
Graver basis via 4ti2 in a practical amount of time. In this thesis we provide a complete
description of the Graver basis for an undirected graph. In general, the number of elements
of the Graver basis is too large. We therefore construct an adaptive algorithm for sampling
elements from the Graver basis, which is sufficient for constructing a connected Markov
chain over any fiber. The recent paper of Reyes et al. [40] discusses the Graver basis for an
undirected graph and gives a characterization of the Graver basis. In this thesis we give
a different description of the Graver basis, which is more suitable for sampling elements
from the Graver basis.
As stated above, Markov basis theory for the concrete statistical model has been devel-

oping very rapidly. When we study Markov bases for a specific problem, usually we are
not faced with a single configuration, but rather with a series of configurations, possibly
parameterized by a few parameters. For example, Markov bases associated with complete
bipartite graphs KI,J (in statistical terms, the independence model of I × J two-way
contingency tables) are parameterized by I and J . In this case, Markov bases consist
of moves of degree two irrespective of I and J . In more general cases, some measure of
complexity of Markov bases grows with the parameter and we are interested in bounding
the growth.
There are some procedures to generate a series of configurations based on a given set of

configurations. One of the most important constructions is the higher Lawrence lifting of
a configuration, for which Santos and Sturmfels [43] described the growth by the notion of
Graver complexity. Another important construction is the nested configuration of Ohsugi
and Hibi [33], where a generated series of configurations basically inherit the desirable
properties of the original configurations. In this thesis we define a new procedure to
generate a series of configurations using fibers of a given configuration, which we call the
base configuration. This construction is closely related to the higher Lawrence lifting of
the base configuration and, exploiting this fact, we prove that the Markov degree of the
configurations is bounded from above by the Markov complexity of the base configuration.
There are some intriguing problems, such as the complete bipartite graphs, in which

moves of degree two form a Markov basis. When a minimal Markov basis contains a move
of degree three or higher, it is usually very hard to control the measures of complexity
of the Markov bases. A notable exception is the conjecture by Diaconis and Eriksson
[6] that the Markov degree associated with the Birkhoff polytope is three, i.e., the toric
ideal associated with the Birkhoff polytope is generated by binomials of degree at most
three. We positively proved this conjecture in a previous work [47]. In view of [14]
and [47], Christian Haase (personal communication, 2013) suggested that the Markov
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degree associated with two-way transportation polytopes and flow polytopes is three.
Very recently, Domokos and Joó [9] gave a proof of this general conjecture. Adapting
the arguments in [47], we provide a proof that the Markov degree associated with two-
way transportation polytopes is three. Two-way transportation polytopes are important
examples in our framework, since they are fibers of the incidence matrix of a complete
bipartite graph.
Maximum likelihood estimation (MLE) is one of the fundamental parameter estimation

methods in statistical inference. However, as in Kleinbaum and Klein [23] and Breslow
and Day [4], the (unconditional) MLE has some bias for the matched data analysis.
In such cases, the conditional MLE (CMLE) is desirable for an appropriate estimation.
Traditionally the CMLE is used for estimation of the odds ratio in the common odds ratio
model.
When we apply the CMLE for the generalized setting of the common odds ratio model,

the conditional likelihood becomes a difficult problem due to the computational cost of the
normalizing constant of conditional likelihood. Although there have been many previous
studies on computation of the p-value for conditional testing, only a few results for CMLE
are known, except for the case of estimating the common odds ratio for 2 × 2 tables.
In this thesis we discuss the computation of the CMLE for the statistical models whose
normalizing constant of the conditional likelihood can be dealt with the A-hypergeometric
function, which is a solution of A-hypergeometric system.
The A-hypergeometric system is one of the most important classes of the system of

linear partial differential equations introduced by Gel′fand et al. [12]. Since the A-
hypergeometric system has fruitful mathematical properties, many researchers have stud-
ied it from analytical, combinatorial, and algorithmic viewpoints (see e.g. [42]). A dif-
ference version of the A-hypergeometric system was introduced by Ohara and Takayama
[28].
Nakayama et al. [26] proposed the holonomic gradient descend (HGD) as an applica-

tion of the Gröbner basis theory in D-modules to a numerical optimization problem. In
directional statistics, computation of the normalizing constant can sometimes be difficult,
since this constant has no closed form and requires numerical integration in general. In
[26], Nakayama et al. derived a system of linear partial differential equations satisfied
by the normalizing constant of the Fisher–Bingham distribution and applied the Gröbner
basis technique in the ring of differential operators to evaluate the normalizing constant.
Since the motivation of [26] was the MLE for the Fisher–Bingham distribution, they

name the method holonomic gradient descent (HGD). The key part of the HGD is nu-
merical evaluation of the normalizing constant, and we can apply the framework called
the holonomic gradient method (HGM) to various computational problems in statistics.
Fortunately, because the class of holonomic functions covers a large class of normalizing
constants of important statistical models, the theory and application of the HGM have
been rapidly developed, especially for solving the computational problems in statistics
(see [24, 25, 20, 45, 44]).
Once we have a holonomic system for computing the normalizing constant, we can obtain

a Pfaffian system by using algebraic computational software such as Risa/Asir ([41])
via Gröbner basis computation, at least in principle. However, since the computational
cost is huge in general and the singular locus of the Pfaffian system causes difficulties
in the numerical computation, the theoretical study of Pfaffian systems and appropriate
numerical implementation are important. Thus we mainly concentrate on the specific
settings of the A-hypergeometric system derived from the two-way contingency tables.
Our model is based on the classical independence model of two-way contingency tables.
In this case the corresponding A-hypergeometric system is known as the Aomoto–Gel′fand
system in the theory of hypergeometric functions.
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