1,311 research outputs found

    PTX3 genetic variations affect the risk of Pseudomonas aeruginosa airway colonization in cystic fibrosis patients

    Get PDF
    Cystic fibrosis (CF) is a common life-threatening autosomal recessive disorder in the Caucasian population, and the gene responsible is the CF transmembrane conductance regulator (CFTR). Patients with CF have repeated bacterial infection of the airways caused by Pseudomonas aeruginosa (PA), which is one of the predominant pathogen, and endobronchial chronic infection represents a major cause of morbidity and mortality. Pentraxin 3 (PTX3) is a gene that encodes the antimicrobial protein, PTX3, which is believed to have an important role in innate immunity of lung. To address the role of PTX3 in the risk of PA lung colonization, we investigated five single nucleotide polymorphisms of PTX3 gene in 172 Caucasian CF patients who were homozygous for the F508del mutation. We observed that PTX3 haplotype frequencies were significantly different between patients with PA colonization, as compared with noncolonized patients. Moreover, a protective effect was found in association with a specific haplotype (odds ratio 0.524). Our data suggest that variations within PTX3 affect lung colonization of Pseudomonas in patients with CF

    Pathogen Recognition by the Long Pentraxin PTX3

    Get PDF
    Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs) that recognise pathogen-associated molecular patterns (PAMPs) and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a nonredundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the cross-road between innate immunity, inflammation, and female fertility. Here, we review the studies on PTX3, with emphasis on pathogen recognition and cross-talk with other components of the innate immune system

    Phylogeny and expression analysis of C-reactive protein (CRP) and serum amyloid-P (SAP) like genes reveal two distinct groups in fish

    Get PDF
    This work was funded by British Society of Animal Science/Genesis Faraday to both SAM and SB Immune control of energy reallocation in fish and a BBSRC Research Experience Placements (2010).Peer reviewedPublisher PD

    Tir8/Sigirr prevents murine lupus by suppressing the immunostimulatory effects of lupus autoantigens

    Get PDF
    The Sigirr gene (also known as Tir8) encodes for an orphan receptor of the Toll-like receptor (TLR)/interleukin 1 receptor family that inhibits TLR-mediated pathogen recognition in dendritic cells. Here, we show that Sigirr also inhibits the activation of dendritic cells and B cells upon exposure to RNA and DNA lupus autoantigens. To evaluate the functional role of Sigirr in the pathogenesis of systemic lupus erythematosus (SLE), we generated Sigirr-deficient C57BL/6-lpr/lpr mice. These mice developed a progressive lymphoproliferative syndrome followed by severe autoimmune lung disease and lupus nephritis within 6 mo of age as compared with the minor abnormalities observed in C57BL/6-lpr/lpr mice. Lack of Sigirr was associated with enhanced activation of dendritic cells and increased expression of multiple proinflammatory and antiapoptotic mediators. In the absence of Sigirr, CD4 T cell numbers were increased and CD4+CD25+ T cell numbers were reduced. Furthermore, lack of Sigirr enhanced the activation and proliferation of B cells, including the production of autoantibodies against multiple nuclear lupus autoantigens. These data identify Sigirr as a novel SLE susceptibility gene in mice

    Production of the soluble pattern recognition receptor PTX3 by myeloid, but not plasmacytoid, dendritic cells

    Get PDF
    PTX3 is a prototypic of long pentraxin consisting of an N-terminal portion coupled to a C-terminal pentraxin domain, the latter related to short pentraxins (C-reactive protein and serum amyloid P component). PTX3 is a soluble pattern recognition receptor, which plays a non-redundant role in resistance against selected pathogens and in female fertility. The present study was designed to analyze the production of PTX3 by human dendritic cells (DC) and to define the role of different innate immunity receptors in its induction. Human monocyte-derived DC produced copious amounts of PTX3 in response to microbial ligands engaging different members of the Toll-like receptor (TLR) family (TLR1 through TLR6), whereas engagement of the mannose receptor had no substantial effect. DC were better producers of PTX3 than monocytes and macrophages. Freshly isolated peripheral blood myeloid DC produced PTX3 in response to diverse microbial stimuli. In contrast, plasmacytoid DC exposed to influenza virus or to CpG oligodeoxynucleotides engaging TLR9, did not produce PTX3. PTX3-expressing DC were present in inflammatory lymph nodes from HIV-infected patients. These results suggest that DC of myelomonocytic origin are a major source of PTX3, a molecule which facilitates pathogen recognition and subsequent activation of innate and adaptive immunity

    The Long Pentraxin PTX3 as a Humoral Innate Immunity Functional Player and Biomarker of Infections and Sepsis

    Get PDF
    The first line of defense in innate immunity is provided by cellular and humoral mediators. Pentraxins are a superfamily of phylogenetically conserved humoral mediators of innate immunity. PTX3, the first long pentraxin identified, is a soluble pattern recognition molecule rapidly produced by several cell types in response to primary pro-inflammatory signals and microbial recognition. PTX3 acts as an important mediator of innate immunity against pathogens of fungal, bacterial and viral origin, and as a regulator of inflammation, by modulating complement activation and cell extravasation, and facilitating pathogen recognition by myeloid cells. In sepsis, PTX3 plasma levels are associated with severity of the condition, patient survival, and response to therapy. In combination with other established biomarkers, PTX3 could improve stratification of sepsis patients and thus, complement the system of classification and monitoring of this disease

    Tuning inflammation in tuberculosis: the role of decoy receptors

    Get PDF
    Decoy receptors are "silent scavengers" of CC chemokines and cytokines, which play a key role in damping inflammation and tissue damage. In this review we discuss on recent findings demonstrating that these receptors set the balance between antimicrobial resistance, immune activation and inflammatory response in Mycobacterium tuberculosis infection

    The Long Pentraxin PTX3 as a Link Between Innate Immunity, Tissue Remodeling, and Cancer

    Get PDF
    The innate immune system comprises a cellular and a humoral arm. Humoral pattern recognition molecules include complement components, collectins, ficolins, and pentraxins. These molecules are involved in innate immune responses by recognizing microbial moieties and damaged tissues, activating complement, exerting opsonic activity and facilitating phagocytosis, and regulating inflammation. The long pentraxin PTX3 is a prototypic humoral pattern recognition molecule that, in addition to providing defense against infectious agents, plays several functions in tissue repair and regulation of cancer-related inflammation. Characterization of the PTX3 molecular structure and biochemical properties, and insights into its interactome and multiple roles in tissue damage and remodeling support the view that microbial and matrix recognition are evolutionarily conserved functions of humoral innate immunity molecules

    Inflammation and the coagulation system in tuberculosis: Tissue Factor leads the dance

    Get PDF
    Mycobacterium tuberculosis, the causative agent of tuberculosis, drives the formation of granulomas, structures in which both immune cells and the bacterial pathogen cohabit. The most abundant cells in granulomas are macrophages, which contribute as both cells with bactericidal activity and as targets for M. tuberculosis infection and proliferation during the entire course of infection. The mechanisms and factors involved in the regulation and control of macrophage microenvironment-specific polarization and plasticity are not well understood, as some granulomas are able to control bacteria growth and others fail to do so, permitting bacterial spread. In this issue of the European Journal of Immunology, Venkatasubramanian et al. [Eur. J. Immunol. 2016. 46: 464-479] show that mice lacking the tissue factor gene in myeloid cells have augmented M. tuberculosis growth and increased inflammation in the lungs. This suggests that tissue factor, an initiator of coagulation, is important for the generation of fibrin, which supports granuloma formation. This article demonstrates for the first time the involvement of tissue factor in inducing effective immunity against M. tuberculosis, and sheds new lights on the complex interplay between host inflammatory response, the coagulation system, and the control of M. tuberculosis infection
    • …
    corecore