69 research outputs found

    Parent’s Cardiorespiratory Fitness, Body Mass, and Chronic Disease Status Is Associated with Metabolic Syndrome in Young Adults: A Preliminary Study

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).We sought to determine if there was an intergenerational association between parental weight, cardiorespiratory fitness (CRF), and disease status, with the prevalence of metabolic syndrome (MetSyn) in their young adult o spring. Young adults (n = 270, 21 1 years, 53.3% female) were assessed for MetSyn and self-reported parent’s CRF, body mass status, and disease status. MetSyn was present in 11.9% of participants, 27.4% had one or two components, and 58.5% had no components. A significantly higher percentage (93.9%) of young adults with MetSyn identified at least one parent as being overweight or obese, 84.8% reported low parental CRF and 87.9% reported a parent with disease (all p < 0.017). MetSyn in o spring is more likely when parents are perceived to have low CRF, increased body mass, and a diagnosis of disease. Evaluating the o spring of people with low CRF, elevated body mass, or who have a history of cardiovascular disease (CVD) or diabetes should be considered to promote early identification and treatment of young adults to reduce future premature CVD in these at-risk individuals

    Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis

    Get PDF
    © 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Metabolic syndrome (MetSyn) represents a clustering of different metabolic abnormalities. MetSyn prevalence is present in approximately 25% of all adults with increased prevalence in advanced ages. The presence of one component of MetSyn increases the risk of developing MetSyn later in life and likely represents a high lifetime burden of cardiovascular disease risk. Therefore we pooled data from multiple studies to establish the prevalence of MetSyn and MetSyn component prevalence across a broad range of ethnicities. PubMed, SCOPUS and Medline databases were searched to find papers presenting MetSyn and MetSyn component data for 18–30 year olds who were apparently healthy, free of disease, and MetSyn was assessed using either the harmonized, National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII), American Heart Association/National Heart, Blood and Lung Institute (AHA/NHBLI), or International Diabetes Federation (IDF) definitions of MetSyn. After reviewing returned articles, 26,609 participants' data from 34 studies were included in the analysis and the data were pooled. MetSyn was present in 4.8–7% of young adults. Atherogenic dyslipidaemia defined as low high density lipoprotein (HDL) cholesterol was the most prevalent MetSyn component (26.9–41.2%), followed by elevated blood pressure (16.6–26.6%), abdominal obesity (6.8–23.6%), atherogenic dyslipidaemia defined as raised triglycerides (8.6–15.6%), and raised fasting glucose (2.8–15.4%). These findings highlight that MetSyn is prevalent in young adults. Establishing the reason why low HDL is the most prevalent component may represent an important step in promoting primary prevention of MetSyn and reducing the incidence of subsequent clinical disease

    In vivo human cardiac shortening and lengthening velocity is region-dependent and not coupled with heart rate

    Get PDF
    New Findings •What is the central question of this study? Regulation of cardiac function is typically achieved by changes in heart rate (HR) and cardiac shortening velocity (strain rate; SR), but their interdependence in vivo remains poorly understood. •What is the main finding and its importance? Using resistance exercise to increase heart rate and arterial resistance physiologically in humans and measuring regional cardiac SR (at the base and apex), we found that HR and SR were not strictly coupled because SR at the base and apex responded differently, despite the same HR. Importantly, our data show that the region-averaged ‘longitudinal’ SR, which is currently popular in the clinical setting, markedly underestimates the contribution of the apex. The fundamental importance of cardiac shortening and lengthening velocity (i.e. strain rate; SR) has been demonstrated in vitro. Currently, the interdependence between in vivo SR and HR is poorly understood because studies have typically assessed region-averaged ‘longitudinal’ strain rate, which is likely to underestimate the apical contribution, and have used non-physiological interventions that may also have been influenced by multicollinearity caused by concomitant reductions in arterial resistance. Resistance exercise acutely raises HR, blood pressure and arterial resistance and transiently disassociates these cardiovascular factors following exercise. Therefore, we measured SR, HR, blood pressure and arterial resistance in nine healthy men (aged 20 ± 1 years) immediately before, during and after double-leg-press exercise at 30 and 60% of maximal strength. Resistance exercise caused a disproportionate SR response at the left ventricular base and apex (interaction effect, P < 0.05). Consequently, associations between HR and regional peak SR were inconsistent and mostly very weak (r2 = 0.0004–0.24). Likewise, the areas under the curve for systolic and diastolic SR and their relationship with systolic and diastolic duration were variable and weak. Importantly, region-averaged ‘longitudinal’ SR was identical to basal SR, thus, markedly underestimating the apical contribution. In conclusion, in vivo HR and SR are not strictly coupled in healthy humans, which is explained by the region-specific responses of SR that are not captured by ‘longitudinal SR’. This novel observation emphasizes the independent role of in vivo SR in overall cardiac function during stress and may cause a ‘revival’ of SR as a marker of regional left ventricular (dys)function

    Left atrial mechanics and aortic stiffness following high intensity interval training: a randomised controlled study

    Get PDF
    Purpose: High intensity interval training (HIIT) has been shown to improve important health parameters, including aerobic capacity, blood pressure, cardiac autonomic modulation and left ventricular (LV) mechanics. However, adaptations in left atrial (LA) mechanics and aortic stiffness remain unclear. Methods: Forty-one physically inactive males and females were recruited. Participants were randomised to either a 4-week HIIT intervention (n=21) or 4-week control period (n=20). The HIIT protocol consisted of 3x30-second maximal cycle ergometer sprints with a resistance of 7.5% body weight, interspersed with 2-minutes of active unloaded recovery, 3 times per week. Speckle tracking imaging of the LA and M-Mode tracing of the aorta was performed pre and post HIIT and control period. Results: Following HIIT, there was significant improvement in LA mechanics, including LA reservoir (13.9±13.4%, p=0.033), LA conduit (8.9±11.2%, p=0.023) and LA contractile (5±4.5%, p=0.044) mechanics compared to the control condition. In addition, aortic distensibility (2.1±2.7cm2dyn-1103, p=0.031) and aortic stiffness index (-2.6±4.6, p=0.041) were improved compared to the control condition. In stepwise linear regression analysis, aortic distensibility change was significantly associated with LA stiffness change R2 of 0.613 (p=0.002). Conclusion: A short-term programme of HIIT was associated with a significant improvement in LA mechanics and aortic stiffness. These adaptations may have important health implications and contribute to the improved LV diastolic and systolic mechanics, aerobic capacity and blood pressure previously documented following HIIT

    Aerobic training protects cardiac function during advancing age: a meta-analysis of four decades of controlled studies

    Get PDF
    In contrast to younger athletes, there is comparatively less literature examining cardiac structure and function in older athletes. However, a progressive accumulation of studies during the past four decades offers a body of literature worthy of systematic scrutiny. We conducted a systematic review, meta-analysis and meta-regression of controlled echocardiography studies comparing left ventricular (LV) structure and function in aerobically trained older athletes (> 45 years) with age-matched untrained controls, in addition to investigating the influence of chronological age. statistic. , 95% CI 0.05-1.86, p = 0.04). Meta-regression for chronological age identified that athlete-control differences, in the main, are maintained during advancing age. Athletic older men have larger cardiac dimensions and enjoy more favourable cardiac function than healthy, non-athletic counterparts. Notably, the athlete groups maintain these effects during chronological ageing

    The relationship between exercise dose and health-related quality of life with a phase III cardiac rehabilitation program

    No full text
    Purpose: To quantify the relationship between the change in exercise dose and health-related quality of life (HRQoL) in a cohort of patients participating in a community-based phase-3 cardiac rehabilitation (CR) program. Methods: A retrospective, pre-experimental (no control group) design of 58 participants that completed a phase-3, 12-week exercise-based CR program was used to test the current hypothesis. Self-reported HRQoL (36-Item Short Form Health Survey Version 2, SF-36v2) was assessed prior and after completing the CR program. The change in exercise dose was estimated from the assigned training load in weeks 1 and 12 of the CR program. A series of regression models were fitted to ascertain the relationship between the change in exercise dose and changes in the SF-36v2. Results: There was a strong quadratic trend between the change in exercise dose and the mean change in SF-36 Mental and Physical Health Summary Scores. Analysis of covariance showed that the mean changes in the SF-36 Summary Scores statistically fluctuate across quartiles of exercise dose. The data show that there is a threshold amount of increase in exercise (Q2; 350–510 kcal week− 1) needed to HRQoL and that greater amounts of exercise dose (Q3; 511–687 and Q4 ≥ 688 kcal week− 1) did not improve HRQoL further. Conclusions: The current findings suggest that physical and mental health-related quality of life are improved with a phase-3 CR program. The dose–response relationship observed indicates that a threshold exercise dose is required to improve HRQoL, and that larger doses of exercise do not confer further improvements in HRQoL

    Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis

    No full text
    Metabolic syndrome (MetSyn) represents a clustering of different metabolic abnormalities. MetSyn prevalence is present in approximately 25% of all adults with increased prevalence in advanced ages. The presence of one component of MetSyn increases the risk of developing MetSyn later in life and likely represents a high lifetime burden of cardiovascular disease risk. Therefore we pooled data from multiple studies to establish the prevalence of MetSyn and MetSyn component prevalence across a broad range of ethnicities. PubMed, SCOPUS and Medline databases were searched to find papers presenting MetSyn and MetSyn component data for 18–30 year olds who were apparently healthy, free of disease, and MetSyn was assessed using either the harmonized, National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII), American Heart Association/National Heart, Blood and Lung Institute (AHA/NHBLI), or International Diabetes Federation (IDF) definitions of MetSyn. After reviewing returned articles, 26,609 participants' data from 34 studies were included in the analysis and the data were pooled. MetSyn was present in 4.8–7% of young adults. Atherogenic dyslipidaemia defined as low high density lipoprotein (HDL) cholesterol was the most prevalent MetSyn component (26.9–41.2%), followed by elevated blood pressure (16.6–26.6%), abdominal obesity (6.8–23.6%), atherogenic dyslipidaemia defined as raised triglycerides (8.6–15.6%), and raised fasting glucose (2.8–15.4%). These findings highlight that MetSyn is prevalent in young adults. Establishing the reason why low HDL is the most prevalent component may represent an important step in promoting primary prevention of MetSyn and reducing the incidence of subsequent clinical disease
    • …
    corecore