366 research outputs found

    A Modified Delphi Study for Development of a Pediatric Curriculum for Emergency Medicine Residents

    Full text link
    ObjectivesEmergency medicine (EM) trainees are expected to learn to provide acute care for patients of all ages. The American Council for Graduate Medical Education provides some guidance on topics related to caring for pediatric patients; however, education about pediatric topics varies across residency programs. The goal of this project was to develop a consensus curriculum for teaching pediatric emergency care.MethodsWe recruited 13 physicians from six academic health centers to participate in a threeâ round electronic modified Delphi project. Participants were selected on the basis of expertise with both EM resident education and pediatric emergency care. The first modified Delphi survey asked participants to generate the core knowledge, skills, and experiences needed to prepare EM residents to effectively treat children in an acute care setting. The qualitative data from the first round was reformulated into a secondâ round questionnaire. During the second round, participants used rating scales to prioritize the curriculum content proposed during the first round. In round 3, participants were asked to make a determination about each curriculum topic using a threeâ point scale labeled required, optional, or not needed.ResultsThe first modified Delphi round yielded 400 knowledge topics, 206 clinical skills, and 44 specific types of experience residents need to prepare for acute pediatric patient care. These were narrowed to 153 topics, 84 skills, and 28 experiences through elimination of redundancy and two rounds of prioritization. The final lists contain topics classified by highly recommended, partially recommended, and not recommended. The partially recommended category is intended to help programs tailor their curriculum to the unique needs of their learners as well as account for variability between 3â and 4â year programs and the amount of time programs allocate to pediatric education.ConclusionThe modified Delphi process yielded the broad outline of a consensus core pediatric emergency care curriculum.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136667/1/aet210021.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136667/2/aet210021_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136667/3/aet210021-sup-0001-DataSupplementS1.pd

    Impaired cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with Barth syndrome

    Get PDF
    Barth syndrome (BTHS) is an X‐linked condition characterized by altered cardiolipin metabolism and cardioskeletal myopathy. We sought to compare cardiac and skeletal muscle bioenergetics in children, adolescents, and young adults with BTHS and unaffected controls and examine their relationships with cardiac function and exercise capacity. Children/adolescents and young adults with BTHS (n = 20) and children/adolescent and young adult control participants (n = 23, total n = 43) underwent (31)P magnetic resonance spectroscopy ((31)P‐MRS) of the lower extremity (calf) and heart for estimation of skeletal muscle and cardiac bioenergetics. Peak exercise testing (VO (2peak)) and resting echocardiography were also performed on all participants. Cardiac PCr/ATP ratio was significantly lower in children/adolescents (BTHS: 1.5 ± 0.2 vs. Control: 2.0 ± 0.3, P < 0.01) and adults (BTHS: 1.9 ± 0.2 vs. Control: 2.3 ± 0.2, P < 0.01) with BTHS compared to Control groups. Adults (BTHS: 76.4 ± 31.6 vs. Control: 35.0 ± 7.4 sec, P < 0.01) and children/adolescents (BTHS: 71.5 ± 21.3 vs. Control: 31.4 ± 7.4 sec, P < 0.01) with BTHS had significantly longer calf PCr recovery (τ PCr) postexercise compared to controls. Maximal calf ATP production through oxidative phosphorylation (Qmax‐lin) was significantly lower in children/adolescents (BTHS: 0.5 ± 0.1 vs. Control: 1.1 ± 0.3 mmol/L per sec, P < 0.01) and adults (BTHS: 0.5 ± 0.2 vs. Control: 1.0 ± 0.2 mmol/L sec, P < 0.01) with BTHS compared to controls. Blunted cardiac and skeletal muscle bioenergetics were associated with lower VO(2peak) but not resting cardiac function. Cardiac and skeletal muscle bioenergetics are impaired and appear to contribute to exercise intolerance in BTHS

    Interaction of Risk Factors, Comorbidities, and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Preconditioning, Postconditioning, and Remote Conditioning

    Get PDF
    Pre-, post-, and remote conditioning of the myocardium are well described adaptive responses that markedly enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and provide therapeutic paradigms for cardioprotection. Nevertheless, more than 25 years after the discovery of ischemic preconditioning, we still do not have established cardioprotective drugs on the market. Most experimental studies on cardioprotection are still undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of cardiovascular risk factors. However, ischemic heart disease in humans is a complex disorder caused by, or associated with, cardiovascular risk factors and comorbidities, including hypertension, hyperlipidemia, diabetes, insulin resistance, heart failure, altered coronary circulation, and aging. These risk factors induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Moreover, some of the medications used to treat these risk factors, including statins, nitrates, and antidiabetic drugs, may impact cardioprotection by modifying cellular signaling. The aim of this article is to review the recent evidence that cardiovascular risk factors and their medication may modify the response to cardioprotective interventions. We emphasize the critical need to take into account the presence of cardiovascular risk factors and concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple risk factors

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore