71 research outputs found

    Helium metastable species generation in atmospheric pressure RF plasma jets driven by tailored voltage waveforms in mixtures of He and N2

    Get PDF
    Spatially resolved tunable diode-laser absorption measurements of the absolute densities of He-I (23S1) metastables in a micro atmospheric pressure plasma jet operated in He/N2 and driven by 'peaks'- and 'valleys'-type tailored voltage waveforms are presented. The measurements are performed at different nitrogen admixture concentrations and peak-to-peak voltages with waveforms that consist of up to four consecutive harmonics of the fundamental frequency of 13.56 MHz. Comparisons of the measured metastable densities with those obtained from particle-in-cell/Monte Carlo collision simulations show a good quantitative agreement. The density of helium metastables is found to be significantly enhanced by increasing the number of consecutive driving harmonics. Their generation can be further optimized by tuning the peak-to-peak voltage amplitude and the concentration of the reactive gas admixture. These findings are understood based on detailed fundamental insights into the spatio-temporal electron dynamics gained from the simulations, which show that voltage waveform tailoring allows to control the electron energy distribution function to optimize the metastable generation. A high degree of correlation between the metastable creation rate and the electron impact excitation rate from the helium ground state into the He-I ((3s)3S1) level is observed for some conditions which may facilitate an estimation of the metastable densities based on phase resolved optical emission spectroscopy measurements of the 706.5 nm He-I line originating from the above level and metastable density values at proper reference conditions

    Investigation of meteorological conditions and BrO during ozone depletion events in Ny-Ålesund between 2010 and 2021

    Get PDF
    During polar spring, ozone depletion events (ODEs) are often observed in combination with bromine explosion events (BEEs) in Ny-Ålesund. In this study, two long-term ozone data sets (2010–2021) from ozonesonde launches and in situ ozone measurements have been evaluated between March and May of each year to study ODEs in Ny-Ålesund. Ozone concentrations below 15 ppb were marked as ODEs. We applied a composite analysis to evaluate tropospheric BrO retrieved from satellite data and the prevailing meteorological conditions during these events. During ODEs, both data sets show a blocking situation with a low-pressure anomaly over the Barents Sea and anomalously high pressure in the Icelandic Low area, leading to transport of cold polar air from the north to Ny-Ålesund with negative temperature and positive BrO anomalies found around Svalbard. In addition, a higher wind speed and a higher, less stable boundary layer are noticed, supporting the assumption that ODEs often occur in combination with polar cyclones. Applying a 20 ppb ozone threshold value to tag ODEs resulted in only a slight attenuation of the BrO and meteorological anomalies compared to the 15 ppb threshold. Monthly analysis showed that BrO and meteorological anomalies are weakening from March to May. Therefore, ODEs associated with low-pressure systems, high wind speeds, and blowing snow more likely occur in early spring, while ODEs associated with low wind speed and stable boundary layer meteorological conditions seem to occur more often in late spring. Annual evaluations showed similar weather patterns for several years, matching the overall result of the composite analysis. However, some years show different meteorological patterns deviating from the results of the mean analysis. Finally, an ODE case study from the beginning of April 2020 in Ny-Ålesund is presented, where ozone was depleted for 2 consecutive days in combination with increased BrO values. The meteorological conditions are representative of the results of the composite analysis. A low-pressure system arrived from the northeast to Svalbard, resulting in high wind speeds with blowing snow and transport of cold polar air from the north.</p

    Spectroscopic characterization of atmospheric pressure um-jet plasma source

    Full text link
    A radio frequency um-jet plasma source is studied using He/O2 mixture. This um-jet can be used for different applications as a source of chemical active species e.g. oxygen atoms, molecular metastables and ozone. Using absolutely-calibrated optical emission spectroscopy and numerical simulation, the gas temperature in active plasma region and plasma parameters (electron density and electron distribution function) are determined. Concentrations of oxygen atoms and ozone in the plasma channel and in the effluent of the plasma source are measured using emission and absorption spectroscopy. To interpret the measured spatial distributions, the steady-state species' concentrations are calculated using determined plasma parameters and gas temperature. At that the influence of the surface processes and gas flow regime on the loss of the active species in the plasma source are discussed. The measured spatial distributions of oxygen atom and ozone densities are compared with the simulated ones.Comment: 29 pages, 10 figure

    UV continuum emission and diagnostics of hydrogen-containing non-equilibrium plasmas

    Get PDF
    For the first time the emission of the radiative dissociation continuum of the hydrogen molecule (a3Σg+b3Σu+a^{3}\Sigma_{g}^{+} \to b^{3}\Sigma_{u}^{+} electronic transition) is proposed to be used as a source of information for the spectroscopic diagnostics of non-equilibrium plasmas. The detailed analysis of excitation-deactivation kinetics, rate constants of various collisional and radiative transitions and fitting procedures made it possible to develop two new methods of diagnostics of: (1) the ground X1Σg+X^{1}\Sigma_{g}^{+} state vibrational temperature TvibT_{\text{vib}} from the relative intensity distribution, and (2) the rate of electron impact dissociation (d[\mbox{H_{2}}]/dt)_{\text{diss}} from the absolute intensity of the continuum. A known method of determination of TvibT_{\text{vib}} from relative intensities of Fulcher-α\alpha bands was seriously corrected and simplified due to the revision of dad \to a transition probabilities and cross sections of dXd \gets X electron impact excitation. General considerations are illustrated with examples of experiments in pure hydrogen capillary-arc and H2_{2}+Ar microwave discharges.Comment: REVTeX, 25 pages + 12 figures + 9 tables. Phys. Rev. E, eprint replaced because of resubmission to journal after referee's 2nd repor

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reproducibility of `COST Reference Microplasma Jets'

    Get PDF
    Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the `Biomedical Applications of Atmospheric Pressure Plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique

    Experimental and computational investigations of electron dynamics in micro atmospheric pressure radio-frequency plasma jets operated in He/N2 mixtures

    Get PDF
    The electron power absorption dynamics in radio frequency driven micro atmospheric pressure capacitive plasma jets are studied based on experimental phase resolved optical emission spectroscopy and the computational particle in cell simulations with Monte Carlo treatment of collisions. The jet is operated at 13.56 MHz in He with different admixture concentrations of N2 and at several driving voltage amplitudes. We find the spatio-temporal dynamics of the light emission of the plasma at various wavelengths to be markedly different. This is understood by revealing the population dynamics of the upper levels of selected emission lines/bands based on comparisons between experimental and simulation results. The populations of these excited states are sensitive to different parts of the electron energy distribution function and to contributions from other excited states. Mode transitions of the electron power absorption dynamics from the Ω- to the Penning-mode are found to be induced by changing the N2 admixture concentration and the driving voltage amplitude. Our numerical simulations reveal details of this mode transition and provide novel insights into the operation details of the Penning-mode. The characteristic excitation/emission maximum at the time of maximum sheath voltage at each electrode is found to be based on two mechanisms: (i) a direct channel, i.e. excitation/emission caused by electrons generated by Penning ionization inside the sheaths and (ii) an indirect channel, i.e. secondary electrons emitted from the electrode due to the impact of positive ions generated by Penning ionization at the electrodes

    Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE)

    Get PDF
    This paper presents extensive bias determination analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE) satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instrument. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from nearly 20 satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the average values of the mean relative differences are nearly all within +1 to +8%. At higher altitudes (45 60 km), the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments, with mean relative differences of up to +40% (about + 20% on average). For the ACE-MAESTRO version 1.2 ozone data product, mean relative differences are within +/- 10% (average values within +/- 6%) between 18 and 40 km for both the sunrise and sunset measurements. At higher altitudes (similar to 35-55 km), systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (with mean relative differences down to -10%), the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS, indicating a large positive bias (mean relative differences within +10 to +30%) in the 45-55 km altitude range. In contrast, there is no significant systematic difference in bias found for the ACE-FTS sunrise and sunset measurements
    corecore