1,110 research outputs found

    Unified description of bulk and interface-enhanced spin pumping

    Get PDF
    The dynamics of non-equilibrium spin accumulation generated in metals or semiconductors by rf magnetic field pumping is treated within a diffusive picture. The dc spin accumulation produced in a uniform system by a rotating applied magnetic field or by a precessing magnetization of a weak ferromagnet is in general given by a (small) fraction of hbar omega, where omega is the rotation or precession frequency. With the addition of a neighboring, field-free region and allowing for the diffusion of spins, the spin accumulation is dramatically enhanced at the interface, saturating at the universal value hbar omega in the limit of long spin relaxation time. This effect can be maximized when the system dimensions are of the order of sqrt(2pi D omega), where D is the diffusion constant. We compare our results to the interface spin pumping theory of A. Brataas et al. [Phys. Rev. B 66, 060404(R) (2002)]

    Large cone angle magnetization precession of an individual nanomagnet with dc electrical detection

    Get PDF
    We demonstrate on-chip resonant driving of large cone-angle magnetization precession of an individual nanoscale permalloy element. Strong driving is realized by locating the element in close proximity to the shorted end of a coplanar strip waveguide, which generates a microwave magnetic field. We used a microwave frequency modulation method to accurately measure resonant changes of the dc anisotropic magnetoresistance. Precession cone angles up to 909^{0} are determined with better than one degree of resolution. The resonance peak shape is well-described by the Landau-Lifshitz-Gilbert equation

    Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance at ferromagnet/nonmagnet contact

    Get PDF
    We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal-metal acts as a pump of spin-polarized current, giving rise to a spin accumulation. The resulting spin accumulation induces a backflow of spin current into the ferromagnet and generates a dc voltage due to the spin dependent conductivities of the ferromagnet. The magnitude of such voltage is proportional to the spin-relaxation properties of the normal-metal. By using platinum as a contact material we observe, in agreement with theory, that the voltage is significantly reduced as compared to the case when aluminum was used. Furtheremore, the effects of rectification between the circulating rf currents and the magnetization precession of the ferromagnet are examined. Most significantly, we show that using an improved layout device geometry these effects can be minimized.Comment: 9 pages, 11 figure

    Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet

    Get PDF
    We report direct electrical detection of spin pumping, using a lateral normal metal/ferromagnet/normal metal device, where a single ferromagnet in ferromagnetic resonance pumps spin polarized electrons into the normal metal, resulting in spin accumulation. The resulting backflow of spin current into the ferromagnet generates a d.c. voltage due to the spin dependent conductivities of the ferromagnet. By comparing different contact materials (Al and /or Pt), we find, in agreement with theory, that the spin related properties of the normal metal dictate the magnitude of the d.c. voltage

    Decoherence of the Superconducting Persistent Current Qubit

    Get PDF
    Decoherence of a solid state based qubit can be caused by coupling to microscopic degrees of freedom in the solid. We lay out a simple theory and use it to estimate decoherence for a recently proposed superconducting persistent current design. All considered sources of decoherence are found to be quite weak, leading to a high quality factor for this qubit.Comment: 10 pages, 1 figure, Latex/revtex.To appear in proceedings of the NATO-ASI on "Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics"; Corrections were made on Oct. 29th, 199

    Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    Get PDF
    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the fingerprint of a suppression that is enhanced due to a strong anisotropy in spin-orbit fields that can occur when the Rashba and Dresselhaus contributions are engineered to cancel each other. A surprising observation is that this mechanisms for suppressing spin dephasing is not only effective for electrons in the heterojunction quantum well, but also for electrons in a deeper bulk layer.Comment: 5 pages, 3 figure

    An Easy-to-Use Prognostic Model for Survival Estimation for Patients with Symptomatic Long Bone Metastases

    Get PDF
    BACKGROUND: A survival estimation for patients with symptomatic long bone metastases (LBM) is crucial to prevent overtreatment and undertreatment. This study analyzed prognostic factors for overall survival and developed a simple, easy-to-use prognostic model. METHODS: A multicenter retrospective study of 1,520 patients treated for symptomatic LBM between 2000 and 2013 at the radiation therapy and/or orthopaedic departments was performed. Primary tumors were categorized into 3 clinical profiles (favorable, moderate, or unfavorable) according to an existing classification system. Associations between prognostic variables and overall survival were investigated using the Kaplan-Meier method and multivariate Cox regression models. The discriminatory ability of the developed model was assessed with the Harrell C-statistic. The observed and expected survival for each survival category were compared on the basis of an external cohort. RESULTS: Median overall survival was 7.4 months (95% confidence interval [CI], 6.7 to 8.1 months). On the basis of the independent prognostic factors, namely the clinical profile, Karnofsky Performance Score, and presence of visceral and/or brain metastases, 12 prognostic categories were created. The Harrell C-statistic was 0.70. A flowchart was developed to easily stratify patients. Using cutoff points for clinical decision-making, the 12 categories were narrowed down to 4 categories with clinical consequences. Median survival was 21.9 months (95% CI, 18.7 to 25.1 months), 10.5 months (95% CI, 7.9 to 13.1 months), 4.6 months (95% CI, 3.9 to 5.3 months), and 2.2 months (95% CI, 1.8 to 2.6 months) for the 4 categories. CONCLUSIONS: This study presents a model to easily stratify patients with symptomatic LBM according to their expected survival. The simplicity and clarity of the model facilitate and encourage its use in the routine care of patients with LBM, to provide the most appropriate treatment for each individual patient. LEVEL OF EVIDENCE: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence

    Interference effects in isolated Josephson junction arrays with geometric symmetries

    Full text link
    As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable. Isolated Josephson junction arrays are described in terms of such periodic quantum variables and thus exhibit pronounced quantum interference effects arising from paths with different winding numbers (Aharonov-Casher effects). These interference effects have strong implications for the excitation spectrum of the array which are relevant in applications of superconducting junction arrays for quantum computing. The interference effects are most pronounced in arrays composed of identical junctions and possessing geometric symmetries; they may be controlled by either external gate potentials or by adding/removing charge to/from the array. Here we consider a loop of N identical junctions encircling one half superconducting quantum of magnetic flux. In this system, the ground state is found to be non-degenerate if the total number of Cooper pairs on the array is divisible by N, and doubly degenerate otherwise (after the stray charges are compensated by the gate voltages).Comment: 9 pages, 6 figure
    • …
    corecore