We describe electrical detection of spin pumping in metallic nanostructures.
In the spin pumping effect, a precessing ferromagnet attached to a normal-metal
acts as a pump of spin-polarized current, giving rise to a spin accumulation.
The resulting spin accumulation induces a backflow of spin current into the
ferromagnet and generates a dc voltage due to the spin dependent conductivities
of the ferromagnet. The magnitude of such voltage is proportional to the
spin-relaxation properties of the normal-metal. By using platinum as a contact
material we observe, in agreement with theory, that the voltage is
significantly reduced as compared to the case when aluminum was used.
Furtheremore, the effects of rectification between the circulating rf currents
and the magnetization precession of the ferromagnet are examined. Most
significantly, we show that using an improved layout device geometry these
effects can be minimized.Comment: 9 pages, 11 figure