161 research outputs found

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    Oracle inequalities for multi-fold cross validation

    Get PDF
    We consider choosing an estimator or model from a given class by cross validation consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an oracle plus an error which typically grows logarithmically with the number of estimators in the class. We extend the results to penalized cross validation in order to control unbounded loss functions. Applications include regression with squared and absolute deviation loss and classification under Tsybakov’s condition.Article / Letter to editorMathematisch Instituu

    Comparing powder magnetization and transport critical current of Bi,Pb(2223) tapes

    Get PDF
    The magnetic field dependence of the critical current in (Bi,Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10+x/ tapes is compared with the magnetization response of isolated grains extracted from the tapes. Special attention is paid to the low-field behavior. The goal of the experiment is to test the widely-used hypothesis that current paths in these tapes contain both weak- and strong- linked branches, which in low field act in parallel. The data agree with this hypothesis; at temperatures above 50 K the powder magnetization drops off exponentially from the self-field to the irreversibility field, while the transport and magnetization currents in the intact tapes show an extra low-field component. Below 50 K the powder behavior becomes less straightforward, but the parallel-path picture in the tapes still holds

    Critical current versus strain research at the University of Twente

    Get PDF
    At the University of Twente a U-shaped spring has been used to investigate the mechanical properties of a large variety of superconducting tapes and wires. Several mechanisms are responsible for the degradation of critical current as a function of applied strain. A change in its intrinsic parameters causes a reversible critical current dependence in Nb3Sn. The critical current reaches a maximum at a wire-dependent tensile strain level, and decreases when this tensile strain is either released or further increased. In Bi-based tapes the critical current is virtually insensitive to tensile strain up to a sample-dependent irreversible strain limit. When this limit is exceeded, the critical current decreases steeply and irreversibly. This behaviour is attributed to microstructural damage to the filaments. This cracking of the filaments is verified by a magneto-optical strain experiment. Recent experiments suggest that in MgB2 the degradation of critical current is caused by a change in intrinsic properties and damage to the microstructure. Magneto-optical imaging can be used to investigate the influence of applied strain on the microstructure of MgB2, as is done successfully with Bi-based tapes. In all these conductors the thermal precompression of the filaments plays an important role. In Nb3Sn it determines the position of the maximum and in Bi-based and MgB2 conductors it is closely related to the irreversible strain limit

    Potential benefits of an adaptive forward collision warning system

    Get PDF
    Forward collision warning (FCW) systems can reduce rear-end vehicle collisions. However, if the presentation of warnings is perceived as mistimed, trust in the system is diminished and drivers become less likely to respond appropriately. In this driving simulator investigation, 45 drivers experienced two FCW systems: a non-adaptive and an adaptive FCW that adjusted the timing of its alarms according to each individual driver’s reaction time. Whilst all drivers benefited in terms of improved safety from both FCW systems, non-aggressive drivers (low sensation seeking, long followers) did not display a preference to the adaptive FCW over its non-adaptive equivalent. Furthermore, there was little evidence to suggest that the non-aggressive drivers’ performance differed with either system. Benefits of the adaptive system were demonstrated for aggressive drivers (high sensation seeking, short followers). Even though both systems reduced their likelihood of a crash to a similar extent, the aggressive drivers rated each FCW more poorly than their non-aggressive contemporaries. However, this group, with their greater risk of involvement in rear-end collisions, reported a preference for the adaptive system as they found it less irritating and stress-inducing. Achieving greater acceptance and hence likely use of a real system is fundamental to good quality FCW design

    Combinatorial integer labeling theorems on finite sets with applications

    Get PDF
    Tucker’s well-known combinatorial lemma states that, for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of the triangulation a label from the set {±1, ±2, · · · , ±n} with the property that antipodal vertices on the boundary of the cube are assigned opposite labels, the triangulation admits a 1-dimensional simplex whose two vertices have opposite labels. In this paper, we are concerned with an arbitrary finite set D of integral vectors in the n-dimensional Euclidean space and an integer labeling that assigns to each element of D a label from the set {±1, ±2, · · · , ±n}. Using a constructive approach, we prove two combinatorial theorems of Tucker type. The theorems state that, under some mild conditions, there exists two integral vectors in D having opposite labels and being cell-connected in the sense that both belong to the set {0, 1} n +q for some integral vector q. These theorems are used to show in a constructive way the existence of an integral solution to a system of nonlinear equations under certain natural conditions. An economic application is provided

    Induced magnetic moment of Eu3+ ions in GaN

    Get PDF
    Magnetic semiconductors with coupled magnetic and electronic properties are of high technological and fundamental importance. Rare-earth elements can be used to introduce magnetic moments associated with the uncompensated spin of 4f-electrons into the semiconductor hosts. The luminescence produced by rare-earth doped semiconductors also attracts considerable interest due to the possibility of electrical excitation of characteristic sharp emission lines from intra 4f-shell transitions. Recently, electroluminescence of Eu-doped GaN in current-injection mode was demonstrated in p-n junction diode structures grown by organometallic vapour phase epitaxy. Unlike most other trivalent rare-earth ions, Eu3+ ions possess no magnetic moment in the ground state. Here we report the detection of an induced magnetic moment of Eu3+ ions in GaN which is associated with the 7F2 final state of 5D0→7F2 optical transitions emitting at 622 nm. The prospect of controlling magnetic moments electrically or optically will lead to the development of novel magneto-optic devices

    An overview of jets and outflows in stellar mass black holes

    Full text link
    In this book chapter, we will briefly review the current empirical understanding of the relation between accretion state and and outflows in accreting stellar mass black holes. The focus will be on the empirical connections between X-ray states and relativistic (`radio') jets, although we are now also able to draw accretion disc winds into the picture in a systematic way. We will furthermore consider the latest attempts to measure/order jet power, and to compare it to other (potentially) measurable quantities, most importantly black hole spin.Comment: Accepted for publication in Space Science Reviews. Also to appear in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    Covered stents versus Bare-metal stents in chronic atherosclerotic Gastrointestinal Ischemia (CoBaGI): Study protocol for a randomized controlled trial

    Get PDF
    Background: Chronic mesenteric ischemia (CMI) is the result of insufficient blood supply to the gastrointestinal tract and is caused by atherosclerotic stenosis of one or more mesenteric arteries in > 90% of cases. Revascularization therapy is indicated in patients with a diagnosis of atherosclerotic CMI to relieve symptoms and to prevent acute-on-chronic mesenteric ischemia, which is associated with high morbidity and mortality. Endovascular therapy has rapidly evolved and has replaced surgery as the first choice of treatment in CMI. Bare-metal stents (BMS) are standard care currently, although retrospective studies suggested significantly highe
    • …
    corecore