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Abstract Tucker’s well-known combinatorial lemma states that, for any given sym-
metric triangulation of the n-dimensional unit cube and for any integer labeling that
assigns to each vertex of the triangulation a label from the set {±1,±2, . . . ,±n} with
the property that antipodal vertices on the boundary of the cube are assigned opposite
labels, the triangulation admits a 1-dimensional simplex whose two vertices have op-
posite labels. In this paper, we are concerned with an arbitrary finite set D of integral
vectors in the n-dimensional Euclidean space and an integer labeling that assigns to
each element of D a label from the set {±1,±2, . . . ,±n}. Using a constructive ap-
proach, we prove two combinatorial theorems of Tucker type. The theorems state
that, under some mild conditions, there exists two integral vectors in D having oppo-
site labels and being cell-connected in the sense that both belong to the set {0,1}n +q

for some integral vector q. These theorems are used to show in a constructive way
the existence of an integral solution to a system of nonlinear equations under certain
natural conditions. An economic application is provided.
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1 Introduction

Fixed-point theorems are fundamental tools for establishing the existence of a so-
lution to various problems in many fields of study such as economics, mathematics
and engineering. It is well-known that Brouwer’s fixed point theorem is implied by
Sperner’s combinatorial lemma on the unit simplex and that the Borsuk-Ulam theo-
rem is implied by Tucker’s combinatorial lemma on the unit cube.

For any given triangulation of the (n−1)-dimensional unit simplex Sn = {x ∈ R
n+ |∑n

i=1 xi = 1}, where R
n+ is the nonnegative orthant of the n-dimensional Euclidean

space R
n, and any given labeling function assigning to every vertex of the triangu-

lation an integer label from the set {1,2, . . . , n}, such that a vertex x is not assigned
label k whenever xk = 0, Sperner’s lemma states that the triangulation contains a
completely labeled (n − 1)-dimensional simplex, being a simplex whose n vertices
carry all the labels from 1 up to n. In his pioneering work, Scarf [1, 2] gave the first
constructive method for finding a completely labeled simplex in Sperner’s lemma and
thus led to a constructive proof of Brouwer’s theorem as well. Later on, more effi-
cient and more flexible simplicial algorithms were developed by Kuhn [3], Eaves [4],
Merrill [5], van der Laan and Talman [6] among many others.

Tucker’s lemma [7, 8] asserts that for any given symmetric triangulation of the
n-dimensional unit cube Cn = {x ∈ R

n | |xi | ≤ 1, i = 1,2, . . . , n} and any given la-
beling function assigning to every vertex of the triangulation an integer label from
the set {±1,±2, . . . ,±n}, such that antipodal vertices of the triangulation on the
boundary of Cn are assigned opposite labels (labels that sum to zero), there exists a
complementary one-dimensional simplex, i.e., its two vertices have opposite labels.
Tucker’s lemma implies the famous Borsuk-Ulam antipodal point theorem, a more
powerful result than Brouwer’s theorem. Based on the 2n-ray integer labeling algo-
rithm of van der Laan and Talman [9] and Reiser [10], Freund and Todd [11] have
given an elegant constructive proof for Tucker’s lemma, and thus a constructive proof
of Borsuk-Ulam theorem as well, see also van der Laan [12] and Yang [13].

The combinatorial lemmas of Sperner and Tucker have been extended in various
ways. For instance, Fan [14] studied Sperner’s lemma in a broader and more abstract
setting. Shapley [15] generalized Sperner’s lemma by using a set labeling rule instead
of an integer labeling rule. Bapat [16] established a permutation-based generalization
of Sperner’s lemma. Freund [17, 18], van der Laan and Talman [19], Yamamoto [20],
and van der Laan, Talman and Yang [21] proved the existence of a completely labeled
simplex for an arbitrarily given triangulation of the hypercube, the simplotope and
any bounded polyhedron, respectively.

In this paper, we present for the class of finite integrally convex sets several new
results on the existence of two vectors in the set having opposite labels and being
cell-connected, i.e., both vectors belong to the finite set {0,1}n + q for some inte-
gral vector q . The concept of integrally convex set was introduced by Favati and
Tardella [22] and has been well studied in the literature. Many well-known and im-
portant integral polyhedra generate integrally convex sets, for instance, the set P ∩Z

n

is integrally convex for any base polyhedron or generalized polymatroid P , where Z
n

is the integer lattice in R
n. The basic property of an integrally convex set is that its

convex hull admits a cubical triangulation for which the set of vertices is equal to
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the set itself and every simplex is contained in a cube of size one, i.e., a cell equal to
[0,1]n + {q} for some q ∈ Z

n.
For a finite integrally convex set D in R

n and an integer labeling function
� : D → {±1,±2, . . . ,±n}, our combinatorial theorems establish the existence of
two cell-connected points in D with opposite labels under certain mild conditions.
To prove the theorems, we apply the 2n-ray integer labeling algorithm of van der
Laan and Talman [9] and Reiser [10]. This algorithm, originally developed to ap-
proximate a zero point of a continuous function from the n-dimensional unit cube
to R

n, is adapted in such way that it can be used on a cubical triangulation of the
convex hull of D. Starting with an arbitrary point in D, the algorithm generates a se-
quence of adjacent simplices of variable dimension in the triangulation and finds in a
finite number of steps a complementary one-dimensional simplex and therefore two
cell-connected points with opposite labels. Until now, no such algorithm has been
proposed on an arbitrary finite integrally convex set. The combinatorial results in this
paper will be used to establish in a constructive way the existence of a solution to
a discrete system of nonlinear equations. We also discuss a practical application of
these theoretical results.

This paper is organized as follows. In Sect. 2, we present basic concepts and defi-
nitions. In Sect. 3, we establish and prove the two main combinatorial labeling theo-
rems. In Sect. 4, we apply these theorems to show the existence of a solution to a dis-
crete system of nonlinear equations. In Sect. 5, an economic application is discussed.

2 Basic Concepts and Definitions

For a given positive integer n, let N denote the set {1,2, . . . , n}, R
n the n-dimensional

Euclidean space, and Z
n the integer lattice of R

n. For x, y ∈ R
n, x · y stands for the

inner product of x and y. For i ∈ N , e(i) denotes the ith unit vector of R
n and e(−i)

denotes the ith negative unit vector, i.e., e(−i) = −e(i). The symbol 0n stands for
the n-vector of zeroes. A set X ⊆ R

n is symmetric if x ∈ X implies −x ∈ X. For
an arbitrary set X ⊆ R

n, X and ∂X denote the convex hull of X and the relative
boundary of X, respectively.

Two integral points x and y in Z
n are cell-connected if both x and y belong to

the set {0,1}n + {q} for some q ∈ Z
n. For an integer t , 0 ≤ t ≤ n, the t-dimensional

convex hull of t + 1 affinely independent points x1, . . . , xt+1 in R
n is a t-simplex or

simplex and will be denoted by σ(x1, . . . , xt+1). The extreme points x1, . . . , xt+1 of
a t-simplex σ(x1, . . . , xt+1) are the vertices of σ . The convex hull of any subset of
k + 1 vertices of a t-simplex σ , 1 ≤ k ≤ t , is a k-dimensional face or k-face of σ .
A k-face of a t-simplex σ is a facet of σ if k = t − 1, i.e., if the number of vertices is
just one less than the number of vertices of the simplex. A simplex is integral if all of
its vertices are integral vectors, i.e., all vertices are points in Z

n. An integral simplex
is cubical if all its vertices lie in a cube {0,1}n + {q} for some q ∈ Z

n. Notice that
any two vertices of a cubical simplex are cell-connected.

Given an m-dimensional convex set X in R
n, a collection T of m-dimensional

simplices is a triangulation of X, if (i) X is the union of all simplices in T , (ii) the
intersection of any two simplices of T is either empty or a common face of both, and
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(iii) any neighborhood of any point in X only meets a finite number of simplices of
T . We refer to Todd [23] and Yang [13] for a more detailed description of triangula-
tions. A triangulation is cubical if all its simplices are cubical. A triangulation T of a
symmetric convex set is symmetric if σ ∈ T implies −σ ∈ T .

A set D ⊆ Z
n is integrally convex if (i) D = Z

n ∩ D and (ii) the set D is a
union of cubical simplices. Straightforward examples of integrally convex sets are
the sets Z

n, Z
n+, {−1,0,1}n and P ∩ Z

n for any base polyhedron or generalized
polymatroid P . The concept of integrally convex set was originally introduced by
Favati and Tardella [22] and has been well studied in the literature, see Fujishige [24]
and Murota [25]. Iimura et al. ([26], Lemma 1) showed that when a set D is integrally
convex and thus its convex hull D is the union of a collection of cubical simplices,
then there exists a collection of cubical simplices that forms a triangulation of D.
From their proof it also follows that if D is a symmetric integrally convex set, there
exists a symmetric cubical triangulation of the convex hull of D. An integrally con-
vex set D in Z

n is regular if D is n-dimensional and contains an integral point in its
interior. Let

I = {T ⊆ N ∪ (−N) | i ∈ T implies − i /∈ T }
and, for any T ∈ I , let e(T ) = ∑

i∈T e(i). Then, the convex hull of a regular integrally
convex set D in Z

n can be expressed as

D = {x ∈ R
n | e(T ) · x ≤ bT for any T ∈ J }, (1)

for a family J ⊆ I and integers bT , T ∈ J , so that no constraint is redundant. Fur-
ther, for any subset K of J , define

F(K) = {x ∈ D | e(T ) · x = bT for all T ∈ K}.
Then either F(K) is empty or it is a face of D. A set K ⊆ J is admissible, when F(K)

is a face of D. For an admissible set K, we define I (K) = ⋃
T ∈K T . A vector w ∈ R

n

is outgoing at x ∈ D if x + εw /∈ D for any ε > 0. Notice that for h ∈ N ∪ (−N) the
vector e(h) is outgoing at x ∈ D if and only if h ∈ I (K), where K ⊆ J is such that x

lies in the relative interior of the face F(K) of D. Recall that F(∅) = D. We conclude
this section with two examples.

Example 2.1 Let the set D be given by the set of integral points

D = {x ∈ Z
2 | −2 ≤ xi ≤ 2, i = 1,2, and − 2 ≤ x1 + x2 ≤ 2}.

Then, D is a finite and regular symmetric integrally convex set. The family J is
given by

J = {{1}, {−1}, {2}, {−2}, {1,2}, {−1,−2}}
and bT = 2 for all T ∈ J . The point A = (2,0)	 lies in F({{1}, {1,2}}), so that
e(1) and e(2) are the outgoing unit vectors at A. The point B = (2,−1)	 lies in
(the relative interior of) F({{1}}), so that e(1) is the only outgoing unit vector at B .
Finally, the point C = (2,−2)	 lies in F({{1}, {−2}}), so that e(1) and e(−2) are the
outgoing unit vectors at C. The example is illustrated in Fig. 1.
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Fig. 1 Illustration of the
discrete set D in Example 2.1

Fig. 2 Illustration of the
discrete set D in Example 2.2

Example 2.2 Let the set D be given by the set of integral points

D = {x ∈ Z
2 | −2 ≤ x1 ≤ 1, x2 ≤ 3,−3 ≤ x1 + x2 ≤ 3,−4 ≤ x1 − x2 ≤ 1}.

The set D is a finite and regular integrally convex set. The example is illustrated in
Fig. 2. Notice that, for this example, the set D is not symmetric.
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3 Combinatorial Integer Labeling Theorems

Given a set X ⊆ R
n and a finite set of integers K , an integer labeling function

� : X → K assigns to every point in X an element of K ; �(x) is called the label of x.
When X is an integrally convex set D in Z

n and � : D → N ∪ (−N) is an integer la-
beling function, two points x, y ∈ D are said to be opposite labeled if �(x) = −�(y).
We establish two new combinatorial theorems on the existence of two opposite la-
beled cell-connected points in a finite and regular integrally convex set. The proof of
these results is constructive by adapting the 2n-ray algorithm of van der Laan and
Talman [9] and Reiser [10]. To do so, we first give some preliminaries. For an arbi-
trarily chosen integral point v in the interior of D (since D is regular such a point
exists), we define for any T ∈ I the set A(T ) by

A(T ) = {x ∈ D | xi ≥ vi if i ∈ T ;xi ≤ vi if − i ∈ T ; and xi = vi otherwise}.
Observe that A(∅) = {v} and that A(T ) is a t-dimensional convex set for any T ∈ I ,
where t = |T |. Since D is integrally convex, there exists a cubical triangulation of D.
Let T be such a triangulation of D. Since T is cubical, T induces for every T ∈ I
a subdivision of A(T ) into t-dimensional cubical simplices, with t = |T |. Any facet
τ of a t-simplex σ in A(T ) is either a facet of exactly one other t-simplex σ ′ in A(T )

or lies on the boundary of A(T ). In the latter case τ is either a (t − 1)-simplex in
A(T \{k}) for some unique k ∈ T or a facet in A(T ) on the boundary of D. Moreover,
any t-dimensional simplex in A(T ) is cubical and therefore any two vertices of a
t-dimensional simplex in A(T ) are cell-connected. For a given labeling function � :
D → N ∪ (−N) and a set of labels T ⊆ K with t = |T | ≤ n, a (t − 1)-dimensional
simplex τ is said to be T -complete if

{�(x) | x is a vertex of τ } = T ,

i.e., the t vertices of τ are differently labeled by the t integers in the set T .
We are now ready to give the first theorem. In this theorem we impose a condi-

tion of Sperner type on the labeling function to hold for points in D that lie on the
boundary of the convex hull of D.

Theorem 3.1 Let D be a finite and regular integrally convex set in Z
n and let � :

D → N ∪ (−N) be an integer labeling function such that, for any admissible set
K ⊆ J and integral boundary point x ∈ F(K) ∩ D, it holds that �(x) /∈ I (K). Then,
D contains two opposite labeled cell-connected points.

To prove Theorem 3.1, we need the following lemma, stating that no facet of a
simplex in A(T ) on the boundary of D can be T -complete.

Lemma 3.1 When the integer labeling function � : D → N ∪ (−N) satisfies the
boundary condition of Theorem 3.1, there does not exist a T -complete facet in
A(T ) ∩ ∂D for any T ∈ I .

Proof Suppose that τ is a T -complete facet in A(T ) for some T ∈ I and that τ lies on
the boundary of D. Then τ ⊆ A(T )∩F(K) for some minimal admissible set K ⊆ J .
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We will first show that T ∩ I (K) �= ∅. Suppose to the contrary that T ∩ I (K) = ∅.
Take any point x in the relative interior of τ . Clearly, x is in the relative interior
of F(K). Since T ∩ I (K) = ∅, there exists ε > 0 such that, for any ε, 0 ≤ ε ≤ ε,

x + εe(h) ∈ D, for all h ∈ T .

Furthermore, since x is in the interior of τ and τ cannot lie in A(T \ {h}) for any
h ∈ T , there exist unique λi > 0, i ∈ T , such that

x = v +
∑

i∈T

λie(i).

For i ∈ T , let μi be equal to

μi = λi

/∑

j∈T

λj ,

and, for some ε, 0 ≤ ε ≤ ε, let

y = x + ε
∑

i∈T

μie(i).

Then, the point

y =
∑

h∈T

μh(x + εe(h))

is a convex combination of elements of D. Since D is a convex set, y ∈ D. On the
other hand, it holds that x = λv + (1 − λ)y for some 0 < λ < 1. Since v is in the
interior of D and y is in D, the point x must lie in the interior of D, contradicting that
x lies on the boundary of D. Consequently, T ∩ I (K) �= ∅. Take any k ∈ T ∩ I (K).
Since τ is T -complete, some vertex y of τ carries label k, but the boundary condition
implies that no vertex of τ is labeled with k. This yields a contradiction. Therefore
there can be no T -complete facet of a simplex in A(T ) lying in ∂D. �

We now give a constructive proof of Theorem 3.1 by applying the 2n-ray algorithm
of van der Laan and Talman [9] and Reiser [10].

Proof of Theorem 3.1 Let �(v) be the label of the point v. Then, with T = {�(v)},
{v} in A(∅) is a T -complete 0-dimensional facet of the unique 1-dimensional sim-
plex σ 0 = σ(x1, x2) in A(T ) with vertices x1 = v and x2 = v + e(�(v)). The 2n-ray
algorithm starts from σ 0 with T = {�(v)} and generates, for varying sets T ∈ I ,
a sequence of adjacent t-simplices in A(T ) with T -complete common facets, where
t = |T |. When the algorithm encounters a t-simplex σ in A(T ) having a vertex carry-
ing a label k for some k �∈ T ∪ (−T ), then k is added to T and the algorithm continues
in A(T ∪ {k}) with the unique (t + 1)-simplex in A(T ∪ {k}) having σ as its facet.
When the algorithm generates in A(T ) a T -complete facet τ lying in A(T \ {k}) for
some k ∈ T , then k is deleted from T and the algorithm continues in A(T \ {k})
with the facet opposite the vertex of τ carrying label k. The algorithm terminates if
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either it generates in A(T ) a T -complete facet τ in the boundary A(T ) ∩ ∂D or it
encounters a vertex carrying label −k for some k ∈ T . Since the initial simplex σ 0 is
uniquely determined and every other simplex generated by the algorithm has a unique
predecessor and in case it doesn’t satisfy one of the stopping properties stated above
has a unique successor, it follows by the well-known Lemke-Howson argument that
a simplex will never be visited more than once, see van der Laan and Talman [9] for
a more detailed description. Since the number of simplices in the triangulation of D

is finite, the algorithm will terminate with a simplex which has one of the stopping
properties. However, by Lemma 3.1 it can not happen that the algorithm generates
in A(T ) a T -complete facet τ in the boundary A(T ) ∩ ∂D for any T . Therefore, the
algorithm terminates with a cubical simplex having two vertices with labels k and −k

for some k ∈ N and thus finds within a finite number of steps two opposite labeled
cell-connected points in D. �

Theorem 3.1 is illustrated in Fig. 3, in which the discrete set D is the same as
that given in Fig. 1. The boundary condition requires that the labels 1 and 2 do not
occur on the line from (2,0) to (0,2), indeed the labels of the three integer points on
this line are −1 or −2. Also the labels of the integer points on the line from (2,0)

to (2,−2) satisfy the requirement that on this line the label 1 should not occur. Simi-
larly it is easy to verify that all labels of the integer points on the boundary of the set
D satisfy the labeling requirement. Therefore, according to the theorem, there are two
cell-connected points, namely (0,0) and (0,1), having the opposite labels 2 and −2.

Theorem 3.1 holds for any finite (regular) integrally convex set D, i.e., for any
finite set D of integral points for which the convex hull D is a polyhedron as described
in formula (1) and any integral point of D belongs to D itself. A special case is that

Fig. 3 Illustration of
Theorem 3.1
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D is an n-dimensional rectangular or cube given by

D = Cn(a, b) = {x ∈ R
n | ai ≤ xi ≤ bi, i ∈ N},

where a, b are two integral n-vectors satisfying bi > ai + 1 for all i ∈ N . In this
case, the boundary condition of the labeling function reduces to �(x) �= −i whenever
xi = ai and �(x) �= i whenever xi = bi . We now have the following corollary, see also
Freund [17].

Corollary 3.1 Let the set D be given by D = {x ∈ Z
n | ai ≤ xi ≤ bi, i ∈ N}, for

some vectors a, b ∈ Z
n satisfying bi > ai +1 for all i ∈ N , and let � : D → N ∪(−N)

be an integer labeling function such that �(x) �= −i if xi = ai and �(x) �= i if xi = bi .
Then, D contains two opposite labeled cell-connected points.

The following corollary follows immediately from Theorem 3.1 by observing that
when the boundary condition is not satisfied the algorithm either ends with two op-
posite labeled cell-connected points in D or with a T -complete facet in A(T ) ∩ ∂D

for some T . According to the proof of Lemma 3.1, in the latter case we must have
that for at least one element k ∈ T it holds that e(k) is an outgoing vector at τ .

Corollary 3.2 Let D ⊆ Z
n be a finite and regular integrally convex set and let � :

D → N ∪ (−N) be an arbitrary integer labeling function. Then, D contains two
opposite labeled cell-connected points or a point x in the boundary of D such that,
for some k ∈ N ∪ (−N), �(x) = k and e(k) is an outgoing vector at x.

The next corollary follows immediately by applying the previous corollary and
Theorem 3.1 to the integer labeling function �̃ : D → N ∪ (−N) given by �̃(x) =
−�(x) for all x ∈ D.

Corollary 3.3 Let D ⊆ Z
n be a finite and regular integrally convex set and let � :

D → N ∪ (−N) be an arbitrary integer labeling function. Then, D contains two
opposite labeled cell-connected points or a point x in the boundary of D such that,
for some k ∈ N ∪ (−N), �(x) = k and e(−k) is an outgoing vector at x. Moreover,
when � is such that for any admissible set K ⊆ J and integral boundary point x ∈
F(K) ∩ D it holds that �(x) �= −k for any k ∈ I (K), then D contains two opposite
labeled cell-connected points.

We now state our second major existence theorem. This theorem generalizes
the well-known Tucker’s lemma to a finite and regular, symmetric integrally con-
vex set. To prove the theorem we adapt the 2n-algorithm in such a way that when
a T -complete facet τ in A(T ) on the boundary of D is generated, the algorithm con-
tinues with the (−T )-complete facet −τ in A(−T ). This step is called the reflection
step and is originally due to Freund and Todd (1981) who modified the original 2n-ray
algorithm of van der Laan and Talman [9] and Reiser [10] to provide a constructive
proof for Tucker’s lemma.
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Theorem 3.2 Let D ⊆ Z
n be a finite, regular and symmetric integrally convex set and

let � : D → N ∪ (−N) be an integer labeling function such that for any x ∈ ∂D ∩ D,
�(−x) = −�(x). Then, the set D contains two opposite labeled cell-connected points.

Proof Since D is regular, integrally convex and symmetric, there exists a symmetric
cubical triangulation T of D. Moreover, the origin 0n is an element of D and lies in
the interior of D. We take the origin as the starting point v of the 2n-algorithm, i.e.,
for any T ∈ I , the set A(T ) is defined by

A(T ) = {x ∈ D | xi ≥ 0 if i ∈ T ;xi ≤ 0 if − i ∈ T ; and xi = 0, otherwise}.
Since T is cubical, T induces for every T ∈ I a subdivision of A(T ) into
t-dimensional cubical simplices, where t = |T |. Moreover, by the symmetry of D it
follows that A(−T ) = −A(T ) and by the symmetry of T that if σ is a t-dimensional
simplex in A(T ), then −σ is a t-dimensional simplex in A(−T ). In particular it holds
that when τ is a facet of a t-dimensional simplex in A(T ) lying on the boundary of D,
then −τ also lies on the boundary of D and is a facet of precisely one t-dimensional
simplex in A(−T ).

The algorithm starts with the unique 1-dimensional simplex σ 0 in A(T ) having
0n as vertex, where T = {�(0n)}, and generates in the same way as in the proof of
Theorem 3.1 a sequence of adjacent t-simplices in A(T ) with T -complete common
facets for varying T ∈ I , with the only difference that when a T -complete facet τ

of a simplex in A(T ) is generated that lies on the boundary of D, then a reflection
step is made, i.e., the set T of labels becomes −T and the algorithm jumps from
τ to −τ and continues with the unique simplex in A(−T ) having −τ as its facet
in order to generate adjacent t-simplices in A(−T ) with (−T )-complete common
facets. Again each step of the algorithm is uniquely determined and it follows by
the Lemke-Howson argument that no simplex can be visited more than once. Since
D is finite and thus D is bounded, the number of simplices is finite. Therefore the
algorithm terminates within a finite number of steps with a simplex in T having two
opposite labeled vertices. Since any simplex in T is cubical, these two vertices are
cell-connected. �

4 Solving Discrete Systems of Nonlinear Equations

Many problems arising from economics, game theory, engineering and other fields
are formulated as a system of nonlinear equations. The most widely used tool for
showing the existence of a solution to the system is Brouwer’s and Kakutani’s fixed-
point theorems. Brouwer’s theorem states that a continuous function from a convex
and compact subset of R

n to itself leaves one point fixed. The latter one generalizes
the former to upper semicontinuous point-to-set mappings.

In many circumstances, for example, when the domain of interest is a discrete set
or the presence of indivisibility in an economic model is significant, the continuity
(upper semicontinuity) or convexity requirement of Brouwer’s (Kakutani’s) theorem
is no longer fulfilled; see e.g., Kelso and Crawford [27], Fudenberg and Tirole [28],
Scarf [29], Gul and Stacchetti [30], Sun and Yang [31]. The purpose of this section



J Optim Theory Appl (2010) 144: 391–407 401

is to investigate (i) what conditions guarantee the existence of a solution to a discrete
system of nonlinear equations

fi(x1, . . . , xn) = 0, i = 1, . . . , n, (2)

where f = (f1, f2, . . . , fn)
	 is a function from Z

n to R
n, and (ii) how to find a so-

lution, if it exists. A solution to the system (2) is also called a discrete zero point of
f . In the last few years several authors have obtained results on this topic mainly
for functions that are direction preserving (see Iimura et al. [26], Danilov and Ko-
shevoy [32]) or locally gross direction preserving (see Yang [33, 34] and van der
Laan et al. [35–37]).

In this section, we establish two existence theorems for the system (2) that are
built upon the class of simplicially positive maximum component sign preserving
functions introduced by Talman and Yang [38].

Definition 4.1 Let D ⊆ Z
n be an integrally convex set. A function f : D → R

n is
simplicially positive maximum component sign preserving if there exists a cubical
triangulation T of D such that, for any two vertices x and y of a simplex of T ,
fj (x) = maxh∈N fh(x) > 0 implies fj (y) ≥ 0.

The first theorem is a discrete analogue of Brouwer’s fixed-point theorem by ob-
serving that a zero point of f is a fixed-point of the function g given by g(x) =
f (x) + x.

Theorem 4.1 Let D ⊆ Z
n be a finite and regular integrally convex set and let f :

D → R
n be a simplicially positive maximum component sign preserving function.

Assume that, for any x ∈ ∂D ∩ D with f (x) �= 0n, fh(x) < maxi∈N |fi(x)| if e(h) is
outgoing at x for some h ∈ N , and fh(x) > −maxi∈N |fi(x)| if e(−h) is outgoing at
x for some h ∈ N . Then, f has a discrete zero point in D.

To prove Theorem 4.1, we assign to each point x of the set D an integer from the
set N ∪ (−N) ∪ {0}. The labeling rule is induced from the function f as follows. For
given x ∈ D, let k be any element in N such that |fk(x)| = maxh∈N |fh(x)|. Then,
�(x) = 0 if fk(x) = 0, �(x) = k if fk(x) > 0 and �(x) = −k if fk(x) < 0. Observe
that �(x) = 0 if and only if f (x) = 0n.

The following lemma shows that this integer labeling rule excludes the possibility
that any two cell-connected points are opposite labeled when the function satisfies
the simplicially positive maximum component sign preserving property.

Lemma 4.1 Let f : D → R
n be a simplicially positive maximum component sign

preserving function with respect to some cubical triangulation T of D. Then, there
exists no simplex in T carrying both labels k and −k for some k ∈ N .

Proof Suppose to the contrary that there is a simplex in T carrying labels k and −k

for some k ∈ N . Then for the vertex x with label k we have fk(x) = maxh |fh(x)| >

0, while for the vertex y with label −k we have fk(y) = −maxh |fh(y)| < 0. Since
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x and y are in the same simplex, this contradicts the simplicially positive maximum
component sign preserving property of the function f . �

Proof of Theorem 4.1 Let T be the underlying cubical triangulation of D and let �

be the integer labeling function on D induced by f . From the boundary condition
that for every h ∈ N it holds that fh(x) < maxi∈N |fi(x)| if e(h) is outgoing at x and
that fh(x) > −maxi∈N |fi(x)| if e(−h) is outgoing at x for any x ∈ ∂D ∩ D with
f (x) �= 0n, it follows that the labeling function � satisfies the boundary condition of
Theorem 3.1 for any x ∈ ∂D ∩ D satisfying f (x) �= 0n. Suppose that the function
f has no discrete zero point and thus �(x) �= 0 for any x ∈ D. Then it follows from
Theorem 3.1 that there exists two cell-connected integral points with opposite labels.
However, this contradicts Lemma 4.1. Hence, there must be a point in D with label 0,
which proves the existence of a discrete zero point of f in D. �

Theorem 4.1 is illustrated in the following example.

Example 4.1 Consider the function f : D → R
2 given by f (x) = (−2x1,

1 − x2 − x1), where D is the discrete set as given in Example 2.1. It is easy to
verify that f indeed is a simplicially positive maximum component sign preserving
function on D with the cubical triangulation as pictured in Fig. 4. Furthermore, the
function satisfies the boundary condition of Theorem 4.1. Figure 4 also shows the
labels of the points of D induced by f . The unique discrete zero point (0,1) of f

carries label 0.

The next theorem is a discrete analogue of the famous Borsuk-Ulam theorem on
the cube; see Freund and Todd [11], van der Laan [12] and Yang [13].

Fig. 4 Illustration of
Example 4.1
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Theorem 4.2 Let D ⊆ Z
n be a finite, regular and symmetric integrally convex

set and let f : D → R
n be a simplicially positive maximum component sign pre-

serving function with respect to some symmetric cubical triangulation of D such
that, for any x ∈ ∂D ∩ D, there exists some k ∈ N such that fk(x)fk(−x) =
−maxi∈N |fi(x)|maxi∈N |fi(−x)|. Then, f has a discrete zero point in D.

To prove Theorem 4.2, we adapt for an integral point x on the boundary of D

the labeling �(x) as follows. When f (x) = 0n or f (−x) = 0n, �(x) is the label in-
duced by f as above. When both f (x) �= 0n and f (−x) �= 0n, take any k ∈ N such
that fk(x)fk(−x) = −maxi∈N |fi(x)|maxi∈N |fi(−x)|. Then we take �(x) = k if
fk(x) > 0 and �(x) = −k if fk(x) < 0. Clearly, the labeling rule �(·) satisfies that
two antipodal points on the boundary of D either have opposite labels or at least one
of the two points has label 0. The next lemma shows that no two vertices of some
simplex can have opposite labels.

Lemma 4.2 Let D ⊆ Z
n be a finite, regular and symmetric integrally convex set and

let f : D → R
n be a function satisfying the conditions of Theorem 4.2 with respect to

some symmetric cubical triangulation T of D. Then, for the modified integer labeling
function induced by f , there exists no simplex in T carrying both labels k and −k

for some k ∈ N .

Proof Let �(·) be the modified integer labeling function induced by f on D and let
x and y be two vertices of any simplex of T . When both x and y are in the interior of
D, then it follows similarly as in the proof of Lemma 4.1, that x and y can not have
opposite labels. Next, let x be a vertex on the boundary of D with �(x) �= 0. Without
loss of generality, suppose that �(x) = k for some k ∈ N . From the labeling rule it
follows that fk(x) > 0 and fk(x)fk(−x) = −maxi∈N |fi(x)|maxi∈N |fi(−x)|. This
implies that fk(x) = maxh∈N |fh(x)|. We now consider two cases. First, when y is
in the interior of D, it follows by the simplicially positive maximum component sign
preserving condition that y can not have label −k. The second case is that also y is
on the boundary of D. Since D is regular and thus has an interior point, two opposite
points on the boundary can not belong to the same cell and therefore also not to
the same simplex of T . Hence, y is not opposite to x, i.e., y �= −x. Suppose that y

has label −k. Then, by the labeling rule we must have fk(y) < 0, contradicting the
simplicially positive maximum component sign preserving condition on f . �

Proof of Theorem 4.2 Let T be the underlying symmetric cubical triangulation of D

with respect to f and let �(·) be the modified integer label function on D induced
by f . Suppose that the function f has no discrete zero point at all, thus �(x) �= 0
for any x ∈ D. Then �(·) satisfies the boundary condition of Theorem 3.2 and thus
there exists two cell-connected integral points with opposite labels. However, this
contradicts Lemma 4.2. Hence, f must have a discrete zero point in D. �

5 Economic Application

In this section, we discuss an economical application of Theorem 4.1, namely the
Cournot oligopoly model with complementary commodities, see for instance Fuden-
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berg and Tirole [28] or Vives [39]. We first describe the classical version of this model
in which all goods are assumed to be perfectly divisible. There are n firms, each firm
producing its own commodity. The goal of each firm is to choose an amount of prod-
uct that maximizes its own profit given the production levels chosen by other firms.
Let N = {1, . . . , n} denote the set of firms. Assume that firm i produces commod-
ity i. For i ∈ N , let qi ≥ 0 denote the quantity of commodity i produced by firm i,
and let q−i = (q1, . . . , qi−1, qi+1, . . . , qn) denote the (n − 1)-vector of nonnegative
quantities produced by the firms other than firm i. The price pi at which firm i ∈ N

can sell its product is decreasing in its own quantity qi and, due to complementarities
between the commodities, is assumed to be increasing in the quantities qj , j �= i, of
the other firms. It is standard to assume that all price functions are linear, i.e., given
the quantities qj , j �= i, producer i can sell its own quantity qi at price

pi = Pi(qi, q−i ) = ai − biqi +
∑

j �=i

dij qj , i = 1, . . . , n,

where all parameters ai, bi, dij are positive. Each firm i ∈ N has a linear cost func-
tion Ci(qi) = ciqi with ai > ci > 0. For quantities (q1, . . . , qn), the profit πi of firm
i ∈ N is given by

πi(qi, q−i ) = qiPi(qi, q−i ) − ciqi .

A tuple (q∗
1 , q∗

2 , . . . , q∗
n) ∈ R

n+ of nonnegative real numbers is a Cournot-Nash equi-
librium if, for every firm i ∈ N ,

πi(q
∗
i , q∗−i ) ≥ πi(qi, q

∗−i ), for all qi ∈ R+.

It is well-known that there exists a Cournot-Nash equilibrium if 2bi >
∑

j �=i dij for
every firm i = 1, . . . , n.

In many practical situations the assumption that all commodities are perfectly di-
visible cannot be satisfied. In fact, it is typically the case that the commodities are
produced and sold in integer quantities, for example, when they are inherently indi-
visible, such as cars, machines or houses. Also many divisible goods are sold in dis-
crete quantities, like barrels of oil or grain. Therefore it is important to know whether
there exists a discrete Cournot-Nash equilibrium.

A tuple (q∗
1 , q∗

2 , . . . , q∗
n) ∈ Z

n+ of nonnegative integers is a discrete Cournot-Nash
equilibrium if, for every firm i ∈ N ,

πi(q
∗
i , q∗−i ) ≥ πi(qi, q

∗−i ), for all qi ∈ Z+.

That is, given the integer quantities chosen by other firms, each firm chooses an inte-
ger quantity that yields a profit which is at least as high as any other integer quantity
could give.

For a real number x, the symbol [x] denotes the greatest nearest integer to x. Given
nonnegative integer quantities q−i of all other firms, each firm i ∈ N maximizes its
profit πi(qi, q−i ) over all nonnegative integers qi , and its optimal integer quantity is
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given by the reaction function

ri(q−i ) =
[

ai − ci

2bi

+
∑

j �=i

dij

2bi

qj

]

.

Observe that for any i ∈ N it holds that ri(q−i ) ≥ 0 for all q ∈ Z
n+, because ai >

ci > 0. Finally, define the function f : Z
n+ → Z

n by

fi(qi, q−i ) = ri(q−i ) − qi, i = 1, . . . , n.

Clearly, a discrete zero point of f is a discrete Cournot-Nash equilibrium.

Theorem 5.1 The Cournot oligopoly model with complementary commodities has a
discrete Cournot-Nash equilibrium when 2bi >

∑
j �=i dij , i = 1, . . . , n.

Proof We show that the function f satisfies the conditions of Theorem 4.1 for the
discrete set D = {x ∈ Z

n | 0 ≤ xi ≤ M, i = 1, . . . , n}, where M > 1 is an integer
satisfying M > maxi{ ai−ci

2bi−∑
j �=i dij

}. First, for any i ∈ N and q ∈ Z
n+, qi = 0 implies

fi(q) = ri(q−i ) ≥ 0. Also, for any i ∈ N and q ∈ Z
n+, qi = M and qj ≤ M , j �= i,

imply

fi(q) =
[

ai − ci

2bi

+
∑

j �=i

dij

2bi

qj − qi

]

≤
[

ai − ci

2bi

+
∑

j �=i

dij

2bi

M − M

]

≤
[
ai − ci − (2bi − ∑

j �=i dij )M

2bi

]

≤ 0,

where the last inequality follows from the fact that

M >
ai − ci

2bi − ∑
j �=i dij

.

So, the function f satisfies the boundary conditions of Theorem 4.1 on the discrete
set D.

Second, we show that f is simplicially positive maximum component sign pre-
serving with respect to the well-known K-triangulation of R

n with grid size 1. The
K-triangulation of R

n with grid size 1 is the collection of integral simplices σ(y,π)

with vertices y1, . . . , yn+1, with y1 = y and yi+1 = yi + e(π(i)), i = 1, . . . , n for
any y ∈ Z

n and permutation π = (π(1), . . . , π(n)) of the elements in N . We have
to verify that fj (x) = maxh∈N fh(x) > 0 implies fj (y) ≥ 0 for any pair x, y with
x ∈ Z

n+ and y = x + ∑k
h=1 e(π(h)) for k = 1, . . . , n, and any permutation π . To es-

tablish this, it is sufficient to prove that fi(x)fi(y) ≥ 0 for al i ∈ N . Observe that for
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any such pair x and y it holds that yj ∈ {xj , xj + 1} for all j ∈ N . Take any such pair
of points x and y and any i ∈ N , and let Si(x, y) = {j �= i | yj = xj + 1}. Then,

ri(y) =
[

ai − ci

2bi

+
∑

j �=i

dij

2bi

yj

]

=
[

ai − ci

2bi

+
∑

j �=i

dij

2bi

xj +
∑

j∈Si(x,y)

dij

2bi

]

.

Since
∑

j �=i

dij

2bi
< 1, it follows that ri(y) ∈ {ri(x), ri(x) + 1}. Hence, since yi ∈

{xi, xi + 1}, it follows that

fi(y) ∈ {fi(x) − 1, fi(x), fi(x) + 1}.
So, fi(x) ≥ 1 implies fi(y) ≥ fi(x)−1 ≥ 0; and fi(x) ≤ −1 implies fi(y) ≤ fi(x)+
1 ≤ 0. In summary, fi(x)fi(y) ≥ 0 for all i.

We have shown that f satisfies all the conditions of Theorem 4.1 and thus has a
discrete zero point. As a result, there is a discrete Cournot-Nash equilibrium. �
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