151 research outputs found

    Influence of thermal conductivity on the dynamic response of magnetocaloric materials

    Get PDF
    We compare the magnetocaloric effect of samples prepared with different thermal conductivities to investigate the potential of composite materials. By applying the magnetic field under operating conditions we test the material’s response and compare this to heat transfer simulations in order to check the reliability of the adiabatic temperature change probe used. As a result of this study we highlight how the material’s thermal conductivity influences τ , the time constant of temperature change. This parameter ultimately limits the maximum frequency of a refrigerant cycle and offers fundamental information about the correlation between thermal conductivity and the magnetocaloric effect

    Hidden Orbital Order in URu2Si2URu_{2}Si_{2}

    Full text link
    When matter is cooled from high temperatures, collective instabilities develop amongst its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2URu_2Si_2 is one such example, where the order responsible for the sharp specific heat anomaly at T0=17KT_0=17 K has remained unidentified despite more than seventeen years of effort. In URu2Si2URu_{2}Si_{2}, the coexistence of large electron-electron repulsion and antiferromagnetic fluctuations in URu2Si2URu_2Si_2 leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favored. In this paper we use these insights to develop a detailed proposal for the hidden order in URu2Si2URu_2Si_2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17K17 K transition; furthermore we make detailed predictions for neutron scattering measurements

    Cu Electrodeposition on Nanostructured MoS2 and WS2 and Implications for HER Active Site Determination

    Get PDF
    Cu electrodeposition in both underpotential and overpotential regimes on nanostructured MoS2 and WS2 prepared by plasmaenhanced atomic layer deposition has been studied in detail. A combination of electrochemical methods, advanced characterization by X-ray absorption spectroscopy (XAS) as well as theoretical modelling were employed to reveal Cu adsorption modes on transition metal dichalcogenides (TMDs) from initial stages until bulk deposition. Since Cu UPD on TMDs has been used recently to evaluate the number of electrochemically active sites (NAS) for H2 evolution reaction, we evaluate and discuss here the implications of the Cu electrodeposition phenomena on nanostructured MoS2 and WS2 gauging the general applicability of the Cu UPD method for number of HER active sites determination in TMDs. Although an apparently better correlation of HER current density with Cu UPD charge than with double layer capacitance is found, the Cu UPD method cannot be used quantitatively because of the absence of a clear H UPD phenomenon on the studied nanostructured TMDs. This is in contrast to platinum group metal catalysts where H UPD and Cu UPD sites are strongly correlated

    Appraisal patterns of envy and related emotions

    Get PDF
    Envy is a frustrating emotion that arises from upward social comparison. Two studies investigated the appraisals that distinguish benign envy (aimed at improving one’s own situation) from malicious envy (aimed at pulling down the superior other). Study 1 found that appraisals of deservingness and control potential differentiated both types of envy. We manipulated these appraisals in Study 2 and found that while both did not influence the intensity of envy, they did determine the type of envy that resulted. The more a situation was appraised as undeserved, the more participants experienced malicious envy. Benign envy was experienced more when the situation was not undeserved, and the most when the situation was appraised as both deserved and controllable. The current research also clarifies how the types of envy differ from the related emotions admiration and resentment

    Resonant magnetic exciton mode in the heavy-fermion antiferromagnet CeB6

    Full text link
    Resonant magnetic excitations are widely recognized as hallmarks of unconventional superconductivity in copper oxides, iron pnictides, and heavy-fermion compounds. Numerous model calculations have related these modes to the microscopic properties of the pair wave function, but the mechanisms underlying their formation are still debated. Here we report the discovery of a similar resonant mode in the non-superconducting, antiferromagnetically ordered heavy-fermion metal CeB6. Unlike conventional magnons, the mode is non-dispersive, and its intensity is sharply concentrated around a wave vector separate from those characterizing the antiferromagnetic order. The magnetic intensity distribution rather suggests that the mode is associated with a coexisting order parameter of the unusual antiferro-quadrupolar phase of CeB6, which has long remained "hidden" to the neutron-scattering probes. The mode energy increases continuously below the onset temperature for antiferromagnetism, in parallel to the opening of a nearly isotropic spin gap throughout the Brillouin zone. These attributes bear strong similarity to those of the resonant modes observed in unconventional superconductors below their critical temperatures. This unexpected commonality between the two disparate ground states indicates the dominance of itinerant spin dynamics in the ordered low-temperature phases of CeB6 and throws new light on the interplay between antiferromagnetism, superconductivity, and "hidden" order parameters in correlated-electron materials

    AvBD1 nucleotide polymorphisms, peptide antimicrobial activities and microbial colonisation of the broiler chicken gut

    Get PDF
    Abstract Background The importance of poultry as a global source of protein underpins the chicken genome and associated SNP data as key tools in selecting and breeding healthy robust birds with improved disease resistance. SNPs affecting host peptides involved in the innate defences tend to be rare, but three non-synonymous SNPs in the avian β-defensin (AvBD1) gene encoding the variant peptides NYH, SSY and NYY were identified that segregated specifically to three lines of commercial broiler chickens Line X (LX), Line Y(LY) and Line Z. The impacts of such amino acid changes on peptide antimicrobial properties were analysed in vitro and described in relation to the caecal microbiota and gut health of LX and LY birds. Results Time-kill and radial immune diffusion assays indicated all three peptides to have antimicrobial properties against gram negative and positive bacteria with a hierarchy of NYH > SSY > NYY. Calcein leakage assays supported AvBD1 NYH as the most potent membrane permeabilising agent although no significant differences in secondary structure were identified to explain this. However, distinct claw regions, identified by 3D modelling and proposed to play a key role in microbial membrane attachment, and permeation, were more distinct in the NYH model. In vivo AvBD1 synthesis was detected in the bird gut epithelia. Analyses of the caecal gut microbiota of young day 4 birds suggested trends in Lactobacilli sp. colonisation at days 4 (9% LX vs × 30% LY) and 28 (20% LX vs 12% LY) respectively, but these were not statistically significant (P > 0.05). Conclusion Amino acid changes altering the killing capacity of the AvBD1 peptide were associated with two different bird lines, but such changes did not impact significantly on caecal gut microbiota

    The TORCH time-of-flight detector

    Get PDF
    TORCH is a large-area time-of-flight (ToF) detector, proposed for the Upgrade-II of the LHCb experiment. It will provide charged hadron identification over a 2–20 GeV/c momentum range, given a 9.5m flight distance from the LHC interaction point. To achieve this level of performance, a 15ps timing resolution per track is required. A TORCH prototype module having a 1250×660×10mm3 fused-silica radiator plate and equipped with two MCP-PMTs has been tested in a 8GeV/c CERN test-beam. Single-photon time resolutions of between 70–100ps have been achieved, dependent on the beam position in the radiator. The measured photon yields agree with expectations
    corecore