28 research outputs found
A model for the future: Ecosystem services provided by the aquaculture activities of Veta la Palma
En prensa2,041
Antimicrobial management and appropriateness of treatment of urinary tract infection in general practice in Ireland
<p>Abstract</p> <p>Background</p> <p>Urinary tract infections (UTIs) are the second most common bacterial infections in general practice and a frequent indication for prescription of antimicrobials. Increasing concern about the association between the use of antimicrobials and acquired antimicrobial resistance has highlighted the need for rational pharmacotherapy of common infections in general practice.</p> <p>Methods</p> <p>Management of urinary tract infections in general practice was studied prospectively over 8 weeks. Patients presenting with suspected UTI submitted a urine sample and were enrolled with an opt-out methodology. Data were collected on demographic variables, previous antimicrobial use and urine samples. Appropriateness of different treatment scenarios was assessed by comparing treatment with the laboratory report of the urine sample.</p> <p>Results</p> <p>A total of 22 practices participated in the study and included 866 patients. Bacteriuria was established for 21% of the patients, pyuria without bacteriuria for 9% and 70% showed no laboratory evidence of UTI. An antimicrobial agent was prescribed to 56% (481) of the patients, of whom 33% had an isolate, 11% with pyuria only and 56% without laboratory evidence of UTI. When taking all patients into account, 14% patients had an isolate identified and were prescribed an antimicrobial to which the isolate was susceptible. The agents most commonly prescribed for UTI were co-amoxyclav (33%), trimethoprim (26%) and fluoroquinolones (17%). Variation between practices in antimicrobial prescribing as well as in their preference for certain antimicrobials, was observed. Treatment as prescribed by the GP was interpreted as appropriate for 55% of the patients. Three different treatment scenarios were simulated, i.e. if all patients who received an antimicrobial were treated with nitrofurantoin, trimethoprim or ciprofloxacin only. Treatment as prescribed by the GP was no more effective than treatment with nitrofurantoin for all patients given an antimicrobial or treatment with ciprofloxacin in all patients. Prescribing cost was lower for nitrofurantoin. Empirical treatment of all patients with trimethoprim only was less effective due to the higher resistance levels.</p> <p>Conclusions</p> <p>There appears to be considerable scope to reduce the frequency and increase the quality of antimicrobial prescribing for patients with suspected UTI.</p
Bacteria are important dimethylsulfoniopropionate producers in coastal sediments
Dimethylsulfoniopropionate (DMSP) and its catabolite dimethyl sulfide (DMS) are key marine nutrients, with roles in global sulfur cycling, atmospheric chemistry, signalling and, potentially, climate regulation. DMSP production was previously thought to be an oxic and photic process, mainly confined to the surface oceans. However, here we show that DMSP concentrations and DMSP/DMS synthesis rates were higher in surface marine sediment from e.g., saltmarsh ponds, estuaries and the deep ocean than in the overlying seawater. A quarter of bacterial strains isolated from saltmarsh sediment produced DMSP (up to 73 mM), and previously unknown DMSP-producers were identified. Most DMSP-producing isolates contained dsyB, but some alphaproteobacteria, gammaproteobacteria and actinobacteria utilised a methionine methylation pathway independent of DsyB, previously only associated with higher plants. These bacteria contained a methionine methyltransferase ‘mmtN’ gene - a marker for bacterial DMSP synthesis via this pathway. DMSP-producing bacteria and their dsyB and/or mmtN transcripts were present in all tested seawater samples and Tara Oceans bacterioplankton datasets, but were far more abundant in marine surface sediment. Approximately 108 bacteria per gram of surface marine sediment are predicted to produce DMSP, and their contribution to this process should be included in future models of global DMSP production. We propose that coastal and marine sediments, which cover a large part of the Earth’s surface, are environments with high DMSP and DMS productivity, and that bacteria are important producers within them
Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations
Seasonal variations in seawater temperature require extensive metabolic acclimatization in cold-blooded organisms inhabiting the coastal waters of Europe. Given the energetic costs of acclimatization, differences in adaptive capacity to climatic conditions are to be expected among distinct populations of species that are distributed over a wide geographic range. We studied seasonal variations in the metabolic adjustments of two very common bivalve taxa at European scale. To this end we sampled 16 populations of Mytilus spp. and 10 Macoma balthica populations distributed from 39° to 69°N. The results from this large-scale comprehensive comparison demonstrated seasonal cycles in metabolic rates which were maximized during winter and springtime, and often reduced in the summer and autumn. Studying the sensitivity of metabolic rates to thermal variations, we found that a broad range of Q10 values occurred under relatively cold conditions. As habitat temperatures increased the range of Q10 narrowed, reaching a bottleneck in southern marginal populations during summer. For Mytilus spp., genetic-group-specific clines and limits on Q10 values were observed at temperatures corresponding to the maximum climatic conditions these geographic populations presently experience. Such specific limitations indicate differential thermal adaptation among these divergent groups. They may explain currently observed migrations in mussel distributions and invasions. Our results provide a practical framework for the thermal ecophysiology of bivalves, the assessment of environmental changes due to climate change and its impact on (and consequences for) aquaculture
Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning
Background: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.Results: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.Conclusions: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed