238 research outputs found

    Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

    Get PDF
    X-ray computed microtomography (”CT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for ”CT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93-98Όm) and mean throat size (~23-29Όm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduit

    Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

    Get PDF
    International audienceX-ray computed microtomography (ÎŒCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for ÎŒCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93– 98 ÎŒm) and mean throat size (~23–29 ÎŒm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f0). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits

    The mechanics of shallow magma reservoir outgassing

    Get PDF
    Magma degassing fundamentally controls the Earth's volatile cycles. The large amount of gas expelled into the atmosphere during volcanic eruptions (i.e. volcanic outgassing) is the most obvious display of magmatic volatile release. However, owing to the large intrusive:extrusive ratio, and considering the paucity of volatiles left in intrusive rocks after final solidification, volcanic outgassing likely constitutes only a small fraction of the overall mass of magmatic volatiles released to the Earth's surface. Therefore, as most magmas stall on their way to the surface, outgassing of uneruptible, crystal-rich magma storage regions will play a dominant role in closing the balance of volatile element cycling between the mantle and the surface. We use a numerical approach to study the migration of a magmatic volatile phase (MVP) in crystal-rich magma bodies (“mush zones”) at the pore-scale. Our results suggest that buoyancy driven outgassing is efficient over crystal volume fractions between 0.4 and 0.7 (for mm-sized crystals). We parameterize our pore-scale results for MVP migration in a thermo-mechanical magma reservoir model to study outgassing under dynamical conditions where cooling controls the evolution of the proportion of crystal, gas and melt phases and to investigate the role of the reservoir size and the temperature-dependent visco-elastic response of the crust on outgassing efficiency. We find that buoyancy-driven outgassing allows for a maximum of 40-50% volatiles to leave the reservoir over the 0.4-0.7 crystal volume fractions, implying that a significant amount of outgassing must occur at high crystal content (>0.7) through veining and/or capillary fracturing

    A new strategy for the estimation of plume height from clast dispersal in various atmospheric and eruptive conditions

    Get PDF
    Plume height is an important parameter routinely used to characterize and classify explosive eruptions. Though the strategies to estimate key eruption source parameters such as erupted volume and mass flow rate have evolved over the past few decades, the determination of plume height of past eruptions is still mostly based on empirical approaches that do not account for the new developments in plume modelling based on the interaction of plume and wind. Here we present a revised strategy for the retrieval of plume height from field data that accounts for key aspects of plume dynamics and particle sedimentation, which include: i) the effect of wind advection on the buoyant plume, ii) a new parameterization of the gravitational spreading of the umbrella cloud for distances smaller than the radius of the plume, iii) the effect of particle shape on particle sedimentation, iv) the effect of different atmospheric profiles in different climate zones, v) three-dimensional wind, temperature and pressure data, and vi) topography. In particular, as wind can affect the dynamics and height of the plume, new computed sedimentation patterns are more complex and result in non-linear relationships between downwind and crosswind deposition. Our method is tested against observations of the 2011 eruption of Shinmoedake (Japan), the 1980 eruption of Mount St Helens (USA), and the 1991 eruption of Pinatubo (Philippines). These are well-constrained examples of small, intermediate, and high intensity eruptions, respectively. Intensity scenarios are introduced to account for the non-unique relation between plume height and particle sedimentation resulting from wind advection of volcanic plumes. We further demonstrate that needle-like and disk-like particle shapes can have downwind distances 36 to 70% larger than the equivalent spheres. In addition, we find that the effect of latitude on the determination of plume height is more significant for low and intermediate intensity scenarios with a discrepancy between 7 and 20%

    Magnesiate addition/ring-expansion strategy to access the 6-7-6 tricyclic core of hetisine-type C20-diterpenoid alkaloids

    Get PDF
    A synthetic strategy to access the fused 6–7–6 tricyclic core of hetisine-type C20-diterpenoid alkaloids is reported. This strategy employs a Diels–Alder cycloaddition to assemble a fused bicyclic anhydride intermediate, which is elaborated to a vinyl lactone-acetal bearing an aromatic ring in five steps. Aromatic iodination is followed by magnesium–halogen exchange with a trialkyl magnesiate species, which undergoes intramolecular cyclization. Subsequent oxidation provides the desired 6–7–6 tricyclic diketoaldehyde, with carbonyl groups at all three positions for eventual C–N bond formation and subsequent elaboration

    Impact of global warming on the rise of volcanic plumes and implications for future volcanic aerosol forcing

    Get PDF
    ©2016. American Geophysical Union. All Rights Reserved. Volcanic eruptions have a significant impact on climate when they inject sulfur gases into the stratosphere. The dynamics of eruption plumes is also affected by climate itself, as atmospheric stratification impacts plumes' height. We use an integral plume model to assess changes in volcanic plume maximum rise heights as a consequence of global warming, with atmospheric conditions from an ensemble of global climate models, using three representative concentration pathways (RCP) scenarios. Predicted changes in atmospheric temperature profiles decrease the heights of tropospheric and lowermost stratospheric volcanic plumes and increase the tropopause height, for the RCP4.5 and RCP8.5 scenarios in the coming three centuries. Consequently, the critical mass eruption rate required to cross the tropopause increases by up to a factor of 3 for tropical regions and up to 2 for high-latitude regions. A number of recent lower stratospheric plumes, mostly in the tropics (e.g., Merapi, 2010), would be expected to not cross the tropopause starting from the late 21st century, under RCP4.5 and RCP8.5 scenarios. This effect could result in a ≃5–25% decrease in the average SO2 flux into the stratosphere carried by small plumes, the frequency of which is larger than the rate of decay of volcanic stratospheric aerosol, and a ≃2–12% decrease of the total flux. Our results suggest the existence of a positive feedback between climate and volcanic aerosol forcing. Such feedback may have minor implications for global warming rate but can prove to be important to understand the long-term evolution of volcanic atmospheric inputs

    How do volatiles escape their shallow magmatic hearth?

    Get PDF
    Only a small fraction (approx. 1–20%) of magmas generated in the mantle erupt at the surface. While volcanic eruptions are typically considered as the main exhaust pipes for volatile elements to escape into the atmosphere, the contribution of magma reservoirs crystallizing in the crust is likely to dominate the volatile transfer from depth to the surface. Here, we use multiscale physical modelling to identify and quantify the main mechanisms of gas escape from crystallizing magma bodies. We show that most of the outgassing occurs at intermediate to high crystal fraction, when the system has reached a mature mush state. It is particularly true for shallow volatile-rich systems that tend to exsolve volatiles through second boiling, leading to efficient construction of gas channels as soon as the crystallinity reaches approximately 40–50 vol.%. We, therefore, argue that estimates of volatile budgets based on volcanic activity may be misleading because they tend to significantly underestimate the magmatic volatile flux and can provide biased volatile compositions. Recognition of the compositional signature and volumetric dominance of intrusive outgassing is, therefore, necessary to build robust models of volatile recycling between the mantle and the surface. This article is part of the Theo Murphy meeting issue ‘Magma reservoir architecture and dynamics’
    • 

    corecore