180 research outputs found

    Breast density segmentation based on fusion of super pixels and watershed transform

    Get PDF
    Breast density, defined as the proportion of fibroglandular tissue over the entire breast has been linked with a higher risk of developing breast cancer, in fact it has been suggested that women with a mammographic breast density higher than 75 percent have a four-to six-fold higher risk of developing breast cancer than women with little or no dense tissue. Therefore, automatic methods of measuring breast density could potentially aid clinicians to provide more precise breast cancer risk estimates.This paper proposes a novel method of segmenting breast density, which extracts objects with the same density using fusion of super pixels and a watershed based technique, this idea is based on the principle that both super pixel and watershed often results in over segmentation, for the later algorithm, over segmentation may be due to contours which have been suppressed according to similarity of contrast and topological measures, we took advantage of super pixel to consolidate space information and efficiently process the intensity non-homogeneity problem, afterward, re-introduced this contour with watershed transform to get a better segmentation.authorsversionPeer reviewe

    Comparative Study on Local Binary Patterns for Mammographic Density and Risk Scoring

    Get PDF
    Breast density is considered to be one of the major risk factors in developing breast cancer. High breast density can also affect the accuracy of mammographic abnormality detection due to the breast tissue characteristics and patterns. We reviewed variants of local binary pattern descriptors to classify breast tissue which are widely used as texture descriptors for local feature extraction. In our study, we compared the classification results for the variants of local binary patterns such as classic LBP (Local Binary Pattern), ELBP (Elliptical Local Binary Pattern), Uniform ELBP, LDP (Local Directional Pattern) and M-ELBP (Mean-ELBP). A wider comparison with alternative texture analysis techniques was studied to investigate the potential of LBP variants in density classification. In addition, we investigated the effect on classification when using descriptors for the fibroglandular disk region and the whole breast region. We also studied the effect of the Region-of-Interest (ROI) size and location, the descriptor size, and the choice of classifier. The classification results were evaluated based on the MIAS database using a ten-run ten-fold cross validation approach. The experimental results showed that the Elliptical Local Binary Pattern descriptors and Local Directional Patterns extracted most relevant features for mammographic tissue classification indicating the relevance of directional filters. Similarly, the study showed that classification of features from ROIs of the fibroglandular disk region performed better than classification based on the whole breast region

    Feature learning based on connectivity estimation for unbiased mammography mass classification

    Get PDF
    Breast cancer is the most commonly diagnosed female malignancy worldwide. Recent developments in deep convolutional neural networks have shown promising performance for breast cancer detection and classification. However, due to variations in appearance and small datasets, biased features can be learned by the networks in distinguishing malignant and benign instances. To investigate these aspects, we trained a densely connected convolutional network (DenseNet) to obtain representative features of breast tissue, selecting texture features representing different physical morphological representations as the network's inputs. Connectivity estimation, represented by a connection matrix, is proposed for feature learning. To make the network provide an unbiased prediction, we used k-nearest neighbors to find k training samples whose connection matrices are closest to the test case. When evaluated on OMI-DB we achieved improved diagnostic accuracy 73.89±2.89% compared with 71.35±2.66% for the initial CNN model, which showed a statistically significant difference (p=0.00036). The k training samples can provide visual explanations which are useful in understanding the model predictions and failures of the model.</p

    Myofibre Segmentation in H&amp;E Stained Adult Skeletal Muscle Images using Coherence-Enhancing Diffusion Filtering

    Get PDF
    BACKGROUND: The correct segmentation of myofibres in histological muscle biopsy images is a critical step in the automatic analysis process. Errors occurring as a result of incorrect segmentations have a compounding effect on latter morphometric analysis and as such it is vital that the fibres are correctly segmented. This paper presents a new automatic approach to myofibre segmentation in H&E stained adult skeletal muscle images that is based on Coherence-Enhancing Diffusion filtering. METHODS: The procedure can be broadly divided into four steps: 1) pre-processing of the images to extract only the eosinophilic structures, 2) performing of Coherence-Enhancing Diffusion filtering to enhance the myofibre boundaries whilst smoothing the interior regions, 3) morphological filtering to connect unconnected boundary regions and remove noise, and 4) marker controlled watershed transform to split touching fibres. RESULTS: The method has been tested on a set of adult cases with a total of 2,832 fibres. Evaluation was done in terms of segmentation accuracy and other clinical metrics. CONCLUSIONS: The results show that the proposed approach achieves a segmentation accuracy of 89% which is a significant improvement over existing methods
    • …
    corecore