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Classification Performance related to Intrinsic Dimensionality in
Mammographic Image Analysis

Harry Strangea and Reyer Zwiggelaara∗

aDepartment of Computer Science, Aberystwyth University, SY23 3DB, UK

Abstract. In the problem of mammographic image classification one seeks to classify an image, based on certain
aspects or features, into a risk assessment class. The use ofbreast tissue density features provide a good way
of classifying mammographic images into BI-RADS risk assessment classes [1]. However, this approach leads
to a high-dimensional problem as many features are extracted from each image. These features may be an over
representation of the data and it would be expected that the intrinsic dimensionality would be much lower. We aim
to find how running a simple classifier in a reduced dimensional space, in particular the apparent intrinsic dimension,
affects classification performance. We perform classification of the data using a simplek-nearest neighbor classifier
with data pre-processed using two dimensionality reduction techniques, one linear and one non-linear. The optimum
result occurs when using dimensionality reduction in the estimated intrinsic dimensionality. This not only shows
that optimum performance occurs when classifying in the intrinsic-dimensional space but also that dimensionality
reduction can improve the performance of a simple classifier.

1 Introduction

Mammography remains the main tool used for the screening anddetection of breast abnormalities and the development
of full field digital mammographic imaging systems has led toincreased interest in computer aided detection systems
[2]. Radiologists are increasingly turning to such Computer Aided Diagnostics (CAD) systems to assist them in the
detection and/or evaluation of mammographic abnormalities [3]. As such the reliability and accuracy of such systems is
paramount especially as breast cancer constitutes the mostcommon cancer among women in the European Union [4].
Many CAD systems will attempt to detect and classify mammographic abnormalities such as microcalcifications and
masses. However there is a strong correlation between breast cancer risk and breast density [5, 6]. Figure 1 shows 4
mammograms covering a range of breast tissue density [1]. Each of these 4 images represents a different BI-RADS
class. The American College of Radiology BI-RADS [7] is a widely used risk assessment model. It aims to classify a
mammogram into one of four classes according to breast density. The classes can be explained as follows. BI-RADS
I: an almost entirely fatty breast, not dense; BI-RADS II some fibroglandular tissue is present; BI-RADS III the breast
is heterogeneously dense; BI-RADS IV: the breast is extremely dense. Although BI-RADS is becoming a radiological
standard other risk assessment models exist that aim to classify breasts according to different aspects or features present
in the mammogram (e.g. Tabár modelling [8]).

For a CAD system to place a mammogram into one of the BI-RADS classes it will need to use some form of classifi-
cation algorithm. Many algorithms exist for the purpose of classification and generally they work by building a model
of the data from “known” examples (i.e. mammograms with known BI-RADS classes). Using this model the classifier
will then be able to assign each new mammogram to a BI-RADS class. It is unrealistic to use the raw mammographic
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Figure 1. Mammograms showing 4 different breast densities ranging from low density (a) to high density (d).



image as input into a classifier, so features are usually extracted from each image and used as input. In the data from
this paper280 features are extracted from each mammogram (see Section 3).The obvious question to then ask is
whether all the extracted features are necessary? Most high-dimensional data will contain redundancy (i.e. dimen-
sions that provide no extra information) which could impairclassification performance. Dimensionality reduction is
a pre-processing technique that aims to reduce the dimensionality of the data so as to improve classification perfor-
mance. The question now becomes how many dimensions are needed to best represent the original data? Intrinsic
dimensionality estimators aim to find the number of dimensions needed to represent the data without losing important
features. In this paper we combine these two elements. We estimate the intrinsic dimensionality of the data and then
use dimensionality reduction to show that optimal classification performance occurs when classifying in this intrinsic
dimensionality.

We begin by outlining dimensionality reduction and intrinsic dimensionality estimators in Section 2. The data used in
this experiment is then discussed in Section 3 before the methodology is outlined in 4. The results are shown in Section
5 before final conclusions and future work are discussed in Section 6.

2 Dimensionality Reduction

Dimensionality reduction is the process of finding from a setof high-dimensional observations a representation of lower
dimensionality. This representation will maintain certain aspects, or features, of the original data. Different dimension-
ality reduction algorithms will retain different features, and this leads to a multi-level taxonomy of techniques. At the
highest level techniques can be classified by whether they aim to find a linear subspace within the high-dimensional
data, or whether they aim to find a non-linear manifold. We usetwo dimensionality reduction techniques, one linear
(Principal Components Analysis) and one non-linear (Locally Linear Embedding).

2.1 Mathematical Perspective

Given a set of observationsX = {xi}
n
i=1

in an ambient space of dimensionalityD (wherexi ∈ R
D), the aim of

dimensionality reduction is to recover the outputsY = {yi}
n
i=1

in inherent spaced (d � D andyi ∈ R
d) that best

represent the subspace or submanifold contained in the ambient space.

2.2 Principal Components Analysis

Principal Components Analysis (PCA) was first discovered byPearson in 1901 [9] and was further developed by
Hotelling in 1933 [10]. It is perhaps the most widely used dimensionality reduction technique and provides the foun-
dation to many other methods. The principal goal of PCA is to maintain maximal variance between the data points in
the low dimensional space and as such it finds the subspaceS within the ambient space that has maximum variance.
PCA begins by constructing the zero mean covariance matrix,C = covX−X , of X, before finding the solution to the
eigenproblem

CW = λW (1)

The original data,X, is then projected onto the topn eigenvectors ofW to give the low dimensional representationY.

2.3 Locally Linear Embedding

Locally Linear Embedding (LLE) [11] is one of the more popular non-linear dimensionality reduction techniques.
LLE, as the name suggests, aims to preserve the local geometry of the manifold by maintaining local neighborhoods in
the high and low dimensional spaces. This is achieved by minimizing the embedding cost function

Ψ(Y) =

n∑

i=1

|yi −

n∑

j=1

Wijyj|
2 (2)

The weights contained in the matrixW will have been previously calculated by minimizing a similar reconstruction
error based cost function1. This can then be minimized by solving an eigenvalue problemwhose bottomd eigenvectors

1
ε(W) =

∑n
i=1

|xi −
∑n

j=1
Wijxj |

2



provide the set of orthogonal coordinates.

2.4 Intrinsic Dimensionality Estimation

An important, but often under used, tool related to dimensionality reduction is the estimation of the intrinsic dimen-
sionality of the data. The intrinsic dimensionality can be defined as the smallest number of independent parameters
that is needed to generate the given data set [12]. When usinga classifier it is useful to be able to work in the smallest
possible dimensionality as high-dimensional problems lead to more redundant data as well as increased computational
complexity. If the intrinsic dimensionality can be correctly estimated then the redundant data can be “stripped-away”
and the real (intrinsic) data can speak for itself.

Many techniques exist for estimating intrinsic dimensionality (see [13]) and in this paper we use two methods with
widely differing approaches. As dimensionality reductiontechniques can be broken up into linear and non-linear, so
can intrinsic dimensionality estimators. We have chosen one linear and one non-linear. The first method is closely
related to PCA and simply uses the Eigenvalues created from Equation 1 to estimate the dimensionality. By calculating
the residuals of the Eigenvalues and finding at which point the biggest “jump” from one value to another occurs
the intrinsic dimensionality can be estimated. The second is based on the Geodesic Minimum Spanning Tree of the
data [14]. This works by creating a sequence of minimal spanning trees using geodesic distances (obtained by the
Isomap [15] algorithm) and uses the overall lengths of the minimum spanning trees to estimate the dimensionality of
the manifold.

3 Data

The data comes from features extracted from the whole set of322 mammograms that form the MIAS database [1,16].
The data is based on breast tissue density and consists of322 samples each with280 features,10 from morphological
characteristics and the remaining270 from texture information. A fuzzy C-means approach was usedto extract two
clusters (relating to fatty and dense tissue) from the mammograms. The morphological features were created using
relative area of the fatty and dense clusters as well as the first four histogram moments of these clusters. The texture
information was derived from co-occurence matrices [17]. Each of these322 mammograms have been assigned to a
BI-RADS risk assessment class by an expert radiologist [1].

4 Methodology

The first step in this experiment was to obtain classificationresults using the raw high-dimensional data. Ak-fold cross
validation technique was employed throughout this experiment. The data was partitioned into two sets: 1 for training
the classifier and 1 for testing. The size of each fold was14 samples. This meant that for each stage of the cross
validation experiment14 of the 322 samples were used for testing the classifier while the remaining 308 were used
for training purposes. The average over each of these folds was then used as the high-dimensional result. A simple
k-nearest neighbor classifier [18] was used throughout this experiment with the results being averaged over a range
of 2 ≤ k ≤ 30. The results are averaged so as to try to factor out any effects the classifier parameters might have
on the results. We try to solely look at the effects that the dimensionality reduction techniques have. More advanced
classifiers could have been used (such as SVM, C4.5 and Bayesian [19]) but the use of these algorithms would have
made factoring out parameter effects more difficult.

The outcome of a dimensionality reduction technique is heavily affected by the choice of parameters. So one of the
key steps needed when using dimensionality reduction is finding the optimal parameter set. Without this step you run
the risk of performing dimensionality reduction at sub-optimal settings, leading to worse classification results. With
this in mind a simple parameter search can be used to find the optimal parameters for each technique. For PCA where
the only parameter is the target dimensionality the search is straight forward, we simply run the algorithm over a range
of dimensions (1 ≤ d ≤ 28). When using LLE the neighborhood size (k) must be specified. So the algorithm was run
multiple times over a range of values fork (2 ≤ k ≤ 30) and the optimal value was recorded and used.

Once the optimal parameters have been found the data can thenbe classified. The results can then be compared against
those created in high-dimensional space to see if an improvement occurs. The optimal dimensionality found from
the parameter search can also be compared against the estimated intrinsic dimensionality to see if the two do actually
coincide.



Ambient Space (κ = 0.50; Ac = 56%)
B-I B-II B-III B-IV

B-I 67 30 13 2
B-II 16 62 35 6
B-III 4 11 40 19
B-IV 0 0 7 10

62% 62% 60% 46%

PCA +k-NN (κ = 0.57; Ac = 63%)
B-I B-II B-III B-IV

B-I 63 20 5 2
B-II 16 67 29 4
B-III 8 16 55 14
B-IV 0 0 6 17

72% 65% 58% 46%

LLE + k-NN (κ = 0.53; Ac = 59%)
B-I B-II B-III B-IV

B-I 66 18 2 2
B-II 16 62 36 2
B-III 5 23 50 20
B-IV 0 0 7 13

76% 60% 53% 35%

Table 1. Confusion Matrices for classification of MIAS database using different dimensionality reduction techniques
with optimal parameter sets. The results from classification in high-dimensional ambient space are also shown.

5 Results

The results of the experiments are shown in Table 5 with optimal parameters found to bePCA(d = 4) andLLE(d =
10, k = 17). As well as the confusion matrices the kappa co-efficient andclassification accuracy of each experiment
is also displayed. The kappa coefficient is a measure of agreement, beyond chance, between the actual results and
the predicted results. As can be seen the use of dimensionality reduction improves classification performance over
classification in high-dimensional space. PCA gives the best performance with an increase of classification accuracy of
7%. LLE yields an increase of3%. When examining the kappa co-efficient again PCA yields the biggest improvement
signifying that it retains more important aspects of the data between the high and the low-dimensional space. Even
though PCA is only a linear technique it still outperforms LLE. One reason for this could be that LLE simply fails
to find any meaningful manifold in the high-dimensional space, and so picks up a sub-optimal noisy manifold. Local
techniques tend to over fit the manifold and do not necessarily find the global structure of the data.

The graph in Figure 6 shows the classification accuracy of PCAand LLE across a range of dimensions. What is
immediately noticeable is the fact that PCA performs best atd = 4. After this point there is no noticable change
in the classifier’s accuracy showing that the data can be wellexpressed using only4 dimensions. This correlates
with the outcome of the intrinsic dimensionality estimators, both of which estimated the intrinsic dimensionality at
4-dimensions. This gives weight to the fact that optimal classification performance occurs when classifying in the
intrinsic-dimensional space. LLE’s optimal performance occurs atd = 10. The reason for this could be related to the
fact that LLE can’t find the manifold on which the data lies. The best estimate of the manifold it can find occurs when
reducing to10-dimensions.

6 Conclusions & Future Work

At the beginning of this paper we posed the questions of how well a simple classification algorithm performs in a
reduced dimensional space, in particular the apparent intrinsic dimension of the data. From the results shown in
Section 5 we can see that when using PCA on feature data extracted from mammographic images the best classification
performance occurs when working in the estimated intrinsicdimension. There is also a noticeable increase in the
classification accuracy and kappa co-efficient when using either PCA or LLE. This shows that there are benefits to
using a classifier in the estimated intrinsic dimension. We intend to extend this work to show how using more advanced
classifiers can yield a greater improvement to the classification accuracy.

A further extension to this work would be to look at how different dimensionality reduction techniques affect the
classification performance. In this paper we have only focused on two techniques but other methods may be able to
pick up more significant aspects (such as topological features) from the data.
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Figure 2. A graph of classification accuracy against dimensionality of reduced data. The optimum of each is PCA(d =
4) and LLE(d = 10). The estimated intrinsic dimensionality from both GMST and Eigenvalues was4. The results
from LLE were obtained usingk = 17.
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