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A B S T R A C T

Breast cancer is the most commonly diagnosed female malignancy worldwide. Recent developments in
deep convolutional neural networks have shown promising performance for breast cancer detection and
classification. However, due to variations in appearance and small datasets, biased features can be learned
by the networks in distinguishing malignant and benign instances. To investigate these aspects, we trained
a densely connected convolutional network (DenseNet) to obtain representative features of breast tissue,
selecting texture features representing different physical morphological representations as the network’s inputs.
Connectivity estimation, represented by a connection matrix, is proposed for feature learning. To make the
network provide an unbiased prediction, we used 𝑘-nearest neighbors to find 𝑘 training samples whose
connection matrices are closest to the test case. When evaluated on OMI-DB we achieved improved diagnostic
accuracy 73.89 ± 2.89% compared with 71.35 ± 2.66% for the initial CNN model, which showed a statistically
significant difference (𝑝 = 0.00036). The 𝑘 training samples can provide visual explanations which are useful
in understanding the model predictions and failures of the model.
1. Introduction

Breast cancer, diagnosed in over two million women each year,
stands as the most frequently identified non-skin cancer (Sung et al.,
2021). Mammography is the primary screening method for lesion vi-
sualisation and detecting early changes in breast tissue. Radiologists
analyse mammograms to identify any signs of abnormalities, such as
masses, microcalcifications, or architectural distortions (Chen et al.,
2014; Hamidinekoo et al., 2018a). They differentiate between benign
nd potentially malignant findings based on their expertise.
Computer-Aided Diagnoses (CAD) systems are designed as tools to

ssist radiologists in the detection and/or classification of mammo-
raphic abnormalities (Oliver et al., 2010; Alam et al., 2018). Machine
earning, and in particular deep learning technologies, have been pro-
osed to build CAD systems and have shown remarkable progress in
ammography lesion classification (Jiao et al., 2018; Shen et al., 2019;
i et al., 2020; Yu et al., 2021).
Convolutional Neural Networks (CNNs) are one of the most popular

eep learning technologies. Hamidinekoo et al. (2018b) have published
comprehensive review of CNNs in mammographic image processing.
CNN consists of multiple convolution layers stacked on top of each
ther. It is trained by feeding suitable inputs, learning hierarchical
eatures layer by layer and then producing the final output.
One critical concern for CNNs is the lack of training data

Hamidinekoo et al., 2017). In addition, masses and calcifications both

∗ Corresponding author.
E-mail address: gul12@aber.ac.uk (G. Li).

appear in mammography as common clinical signs. Feature-wise results
that were obtained from CNNs, display a fixation on the calcification
over other features. The latter can be used by radiologists to determine
if the mass is benign or malignant. This is likely because calcifications
are strongly associated with some typical breast cancers (such as ductal
carcinoma in situ and invasive cancers) (Mordang et al., 2018). Thus,
the model will easily disregard the mass and instead prioritise the
identification of calcium, potentially resulting in the misclassification
of the sample.

Some works have proposed integrating handcrafted features with
CNNs to improve mass classification (Arevalo et al., 2015, 2016;
Hamidinekoo et al., 2018a). However, some handcrafted features are
highly correlated with each other (Zhang et al., 2021). The high
dimensionality of features increases the complexity of the CNNs, yet the
corresponding increase in performance is relatively limited. Inspired
by Domingues et al. (2012), Dhahbi et al. (2015) and Swiderski et al.
(2017), breast mass diagnosis depends on the shape and margin of mass
rather than conventional hand-crafted features, and Li et al. (2021)
proposed extracting shape features by using binary masks and texture
features from CNNs. They integrated these two separate features to
achieve improved accuracy. The binary mask was produced by an
automatic mask segmentation algorithm. It is difficult to evaluate the
segmentation accuracy on some public datasets without binary mask
labelling.
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Fig. 1. The architecture of our proposed method. Step (1): CNN training. We train DenseNet121 for benign or malignant breast lesion classification. The trained DenseNet121 is

used in subsequent steps. Step (2): deep learned features are extracted from the trained DenseNet121 using the training dataset. Step (3): shape features are extracted from the

trained DenseNet121 using the texture-images. Step (4): A connection matrix is built to provide feature learning. For a test case, we use step (5): 𝑘-Nearest Neighbors to find 𝑘

raining samples to support the trained DenseNet121’s diagnosis.
m
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Another critical concern for CNNs is the lack of explainability.

As CNNs become more complex, it becomes more complicated to

understand their decision-making process. Common approaches such as

Saliency Maps and GradCAM have been commonly used to understand

which parts of an image a CNN used to make a prediction (Simonyan

et al., 2013; Selvaraju et al., 2017). A new output-level, gradient-based

CNN explanation approach, High-Resolution Class Activation Mapping

(HiResCAM) (Draelos and Carin, 2020) is designed as an improvement

on GradCAM. However, recent studies (Mueller et al., 2019; Kenny

et al., 2021) have reported that the evaluation of these techniques has

lagged behind CNNs development, in some cases providing explana-

tions that radiologists do not understand or find too complex. In recent

years, some workers (Papernot and McDaniel, 2018; Ortega-Martorell

et al., 2022) have proposed the use of 𝑘-nearest neighbors (𝑘NN)

training, to explain the prediction on the test dataset. This could help

not only to understand the CNNs but even identify 𝑘-nearest training

samples to assist in determining subsequent treatment.

Based on these two observations (i.e. lack of data and lack of

explainability), we are motivated to construct a breast cancer diagnosis

model: in order to solve the biased learning by integrating shape

features and simultaneously providing visual explanations of the model

predictions. To achieve this, our methods as illustrated in Fig. 1 contain

the following novel aspects: (a) the combination of deep learned, shape

and texture features for the classification of mammographic abnormal-

ities; (b) building connectivity estimation for feature learning; and (c)

using 𝑘-nearest neighbors to identify similar cases.

The desired properties of the proposed model: (1) ensure that the

model uses accurate information, such as the shape of masses to do

predictions; (2) propose a visualisation of the decision-making process

in the model.

2. Methods

2.1. Dataset

In this study, we used the Optimam Medical Image Database (OMI-

DB) (Halling-Brown et al., 2020), which contains NHS Breast Screening
 d

2

Programme (NHSBSP) images from multiple breast screening centres

across the UK and has been created to serve as a large repository

of de-identified medical images to support research involving medical

imaging. The database contains digital mammograms in a standard DI-

COM format. Both craniocaudal (CC) and mediolateral oblique (MLO)

views are available for most cases. Each view is treated as a sepa-

rate image in this study. It also contains pixel-level annotations for

the regions of interest (ROI) and their pathology, including the BI-

RADS (Martin et al., 2006) assessment. BI-RADS scores range from B0

to B6, however in this study, only B2 and B5 cases are used. B2 is

regarded as benign, and B5 is regarded as malignant. It further labels

each ROI as containing calcifications or masses.

We used a dataset containing 1870 breast lesions, 914 lesions are

benign and 956 are malignant. This dataset is created by sampling

image patches from ROIs and resizing them to 224 × 224 using inter-

polation. Data augmentation is used such that each training image is

randomly flipped and rotated, to generate a total of 4488 images.

2.2. Related work

2.2.1. CNN training

Hamidinekoo et al. (2018c) have published a comparative study

on various types of CNNs for binary classification of breast tumours.

DenseNet is a strongly performing deep learning model because it

directly connects from any layer to all subsequent layers to receive the

feature maps of all preceding layers. This is done for concatenating

features while disregarding redundant feature maps during training.

Since the total number of our dataset is limited, we have selected

DenseNet121 (Huang et al., 2017), which represents limited parameters

in our proposed approach.

This model can be divided into the first convolution layer, four

dense blocks, three transition layers and the classification layer. The

initial convolution layer incorporates a 7 × 7 convolution and a 3 × 3

ax pooling on the input images. For dense blocks, dense blocks 1,

, 3 and 4 have 6, 12, 24 and 16 bottleneck layers implemented by a

× 1 convolution before the 3 × 3 convolution layer, which is helpful in

isregarding redundant feature maps. Between the dense blocks, there
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Table 1

Details of the DenseNet121 structure. Conv, max, average and FC represent the

convolution, max pooling, average pooling and fully-connected layers, respectively.

Layer DenseNet121 Output Size

Convolution 7 × 7 conv, stride 2 112 × 112

Pooling 3 × 3 max, stride 2 56 × 56

Dense block (1)

[
1 × 1conv
3 × 3conv

]
× 6 56 × 56

Transition layer (1)
1 × 1conv

2 × 2averge, stride2
28 × 28

Dense block (2)

[
1 × 1conv
3 × 3conv

]
× 6 28 × 28

Transition layer (2)
1 × 1conv

2 × 2averge, stride2
14 × 14

Dense Block (3)

[
1 × 1conv
3 × 3conv

]
× 6 14 × 14

Transition layer (3)
1 × 1conv

2 × 2averge, stride2
7 × 7

Dense block (4)

[
1 × 1conv
3 × 3conv

]
× 6 7 × 7

Classification
7 × 7max

2FC, sof tmax
2 × 1

are transition layers, which are composed of batch normalisation, 1 × 1
onvolution, and 2 × 2 average pooling operations to reduce the feature
aps. The details of the various layers are shown in Table 1.

DenseNet121 is trained to diagnose whether each ROI is benign

r malignant. The classification layer is modified since the original

verage pooling and fully-connected layers are developed to classify

,000 categories instead of two. We replace the average pooling with

max pooling layer which is more sensitive to outliers, followed by a

ense layer with a ReLu activation of 256 neurons and a dropout layer

ith a 0.2 rate, and then the final dense layer, a sigmoid activation

ith only two classes.

We use transfer learning based on pre-trained weights using the

mageNet (Russakovsky et al., 2015) dataset representing primitive

eatures that tend to be preserved across different tasks, whereas the

lassification layer with randomly initialised weights represents higher-

rder features that are more related to specific tasks and require further

raining. Subsequently, DenseNet121 is fine-tuned on a training and

alidation dataset of OMI-DB. The trained Densent121 will be used for

ownstream analysis.

.2.2. Extracting deep learned features

Heatmaps have been widely applied to protect patients from biased

NN results. The most recent method, HiResCAM (Draelos and Carin,

020) faithfully represents the locations within the images that a CNN

as used to make a decision, even if these locations are outside the

bject of interest. In this method, define 𝑠𝑚 as a DenseNet’s raw score

for class 𝑚 before a sigmoid function is applied to provide predicted

probabilities. We first compute the gradient of 𝑠𝑚 with respect to a

collection of feature maps 𝐹 =
{
𝐹𝑗

}𝑁
𝑗=1 produced by a convolutional

layer, where 𝑗 means the depth of feature maps. For a 2D input,

his gradient is 3-dimensional, [𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑁], matching the shape

f the collection of feature maps. After computing the gradient, the

eatmap is produced by element-wise multiplying the gradient and the

eature maps before summing over the feature dimension:

𝐻𝑖𝑅𝑒𝑠𝐶𝐴𝑀
𝑚

=
𝑁∑
𝑗=1

𝜕𝑠𝑚

𝜕𝐹𝑗

⊙ 𝐹𝑗 (1)

here 𝑟𝐻𝑖𝑅𝑒𝑠𝐶𝐴𝑀
𝑚

is referred to as the deep learned features, and ⊙

epresents a Hadamard product. 𝑁 indicates the depth of the feature

aps.

To investigate the unbiasedness of DenseNet121, we extract low-

evel, mid-level and high-level knowledge of the model during training.
3

Fig. 2. Deep learned feature extraction. Breast lesions containing only calcium, only

mass and calcium + mass. Block 1, 2, 3 and 4 represent the deep learned features

corresponding to the breast lesions. They are rescaled to be within [0, 1] and a low

cutoff of 0.06 is used to remove background noise. To gain a better understanding

of these deep learned features and hence the model behaviour, they are resized to

224 × 224 using interpolation and viewed in colour, and the original ROI is added as

a background. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

For an input patch 𝑋 ∈ 𝑅224×224, deep learned features that are

extracted from the pooling layer of four dense blocks. Hence, dense

block 1, 2, 3, and 4 have gradients, which sizes are [28 × 28 × 128],

14 × 14 × 256], [7 × 7 × 512] and [7 × 7 × 1024], respectively. The
eep learned features 𝑟𝑖 come from four dense blocks that have sizes

f 28 × 28, 14 × 14, 7 × 7 and 7 × 7, respectively. Fig. 2shows deep

earned features extracted from three categories of breast lesions. We

re only interested in the features that have positive values for positive

nfluence on the target class which saves computational costs. Negative

alues are likely to belong to other categories in the image.

As shown in Fig. 2, breast lesions contain only calcium, only mass

nd calcium + mass. Block 1, 2, 3 and 4 represent the deep learned

eatures corresponding to the breast lesions. To gain a better under-

tanding of these deep learned features, they are resized and viewed in

olour, and the original ROI is added as a background. The first row

hows the identified areas that are close to calcium. The second row

hows a typical breast lesion which only contains a mass. Here, block

and block 2 seem to catch the boundary information, and block 3 and

lock 4 identify background and light patches of the breast lesion which

ook like calcium. The last row shows a typical breast lesion which not

nly contains a mass but also contains calcium, the model prefers to

ocate calcium and it is difficult to discern other information.

.2.3. Similarity between deep learned features and GLCM texture-images

Lao et al. (2017), Chowdhury et al. (2021), Zhang et al. (2021), Li

t al. (2022) have demonstrated that the deep learned features have

imilar information as hand-crafted features in many areas of medical

mage analysis. To gain a better understanding of deep learned features

or binary classification of breast lesions, we use texture features to

nvestigate the similarity between them.

Within a selected ROI, there are several subregions showing dif-

erent texture statistics, for example, homogeneity emphasises the sur-

ounding tissue, dissimilarity emphasises the transition region between

he mass and the surrounding tissue, and auto-correlation emphasises

he region inside the mass. In this study, we use Grey Level Co-

ccurrence Matrix (GLCM) (Löfstedt et al., 2019) to obtain three GLCM

exture-images, namely, homogeneity, dissimilarity, auto-correlation. An

lement of the GLCM, 𝑝(𝑖, 𝑗), is defined as the joint probability that grey-
evel 𝑖 and grey-level 𝑗 occur together. Texture-images were defined as

ollows.

Homogeneity :

𝐿−1∑ 𝐿−1∑ 1
2 ⋅ 𝑝(𝑖, 𝑗) (2)
𝑖=0 𝑗=0 1 + (𝑖 − 𝑗)
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Fig. 3. The correlation between deep learned features and texture-images. This breast

esion contains a mass. The deep learned features are extracted from the third dense

lock and resized to 224 × 224 (e.g. represented as a 7 × 7 matrix). Positive values

re marked as red patches to analysis in deep learned features. Homogeneity contains

red patches as deep learned features. Dissimilarity contains 9 red patches and Auto-

correlation contains 20 red patches as deep learned features. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of

this article.)

Dissimilarity :

𝐿−1∑
𝑖=0

𝐿−1∑
𝑗=0

|𝑖 − 𝑗| ⋅ 𝑝(𝑖, 𝑗) (3)

uto-correlation:

𝐿−1∑
𝑖=0

𝐿−1∑
𝑗=0

(𝑖 ⋅ 𝑗) ⋅ 𝑝(𝑖, 𝑗) (4)

here 𝐿 is defined as the number of grey-levels in a ROI. Each texture-

mage keeps the same size as ROI.

Fig. 3 shows an example case to compare its deep learned features

nd texture-images. The deep learned features are extracted from the

hird dense block and resized to 224 × 224 (e.g. represented as a 7 × 7
atrix). We marked features with positive values as red patches. If one

eep learned feature has a positive value in a texture-image at the same

osition, we keep the red patch. If one deep learned feature corresponds

o a low value in a texture-image, the red patch is removed. In high-

alue patches, there are five red patches in homogeneity. To gain a better

ntuition about texture-images, they are added with corresponding

igh-value patches and marked as red squares.

To be specific, auto-correlation not only contains 11 patches as

eep learned features but also has 9 patches that are not included in

issimilarity. Considering these two texture-images are highly correlated

ith each other, the number of selected texture-images will affect the

omplexity of the model. We choose homogeneity and auto-correlation

o improve the mass classification in the biased model.

.3. Proposed methods

The proposed method for a graphical overview see Fig. 1 can be

ivided into five steps: step (1): CNN training. We use OMI-DB to train

enseNet121 for benign or malignant breast lesion classification; step

2): Extracting deep learned features. HiResCAM is utilised to produce

eep learned features and represents the locations within the ROI that

NN has used to make a decision; step (3): Extracting shape features.

electing textural ROIs representing different physical representations

s inputs used by the trained CNN and extracting shape features; step

4): Feature learning. We build a connection matrix to learn shape

eatures for each training sample; step (5): 𝑘-Nearest Neighbors. Once

ll of the connection matrices for the training set are calculated, we

se 𝑘-nearest neighbors to find 𝑘 training samples whose connection

atrices are closest to the test case and use the neighbours to further
mprove the CNN’s diagnosis.

4

Fig. 4. Visualisation of deep learned features. Breast lesions containing only mass (a)

and calcium + mass (b). Deep learned features corresponding to (a) and (b) that are

extracted from the third dense block. These are rescaled to be within [0, 1] and resized

to 224 × 224 using interpolation. HiResCAM adds the original ROI as a background

and shows deep learned features in colour. To gain a better intuition about deep

learned features based on the homogeneity texture-image, they are shown in two colours.

The red lines represent the shape of mass in the original ROI. The yellow ellipses

represent calcium, background or other factors used by the trained DenseNet121 to

make predictions. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

Step (1): CNN training and step (2): Extracting Deep learned fea-

tures are implemented in Section 2.2. Steps (3)-(5) will work on top of

the previous steps and be introduced in this section.

2.3.1. Extracting shape features

The trained DenseNet121 is employed for classifying benign or

malignant lesions using texture-images. The first input image is auto-

correlation to reduce the calcium’s emphasis in the lesion. The sec-

ond input image is homogeneity because we find the model considers

not only the lesion itself but also its neighbourhood which contains

relevant information, which is considered by radiologists for diag-

nosis (Hamidinekoo et al., 2017). Then deep learned features are

extracted from texture-images and ROIs to compare the differences

between them as shown in Fig. 4.

Similar to Fig. 2, we use the same breast lesions containing only

mass (a) and calcium + mass (b) to compare the deep learned features

from the original ROI and homogeneity texture-image. The deep learned

features are extracted from the third dense block (e.g. represented

as a 7 × 7 matrix). The distribution of features from the ROI is

scattered. The distribution of features based on homogeneity is more

concentrated, which we manually divided into two groups. The first

group used red lines to connect them correspond to the shape of the
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Fig. 5. Connectivity graph of example deep learned features 𝑟3 and shape features

𝑡13 in Fig. 4(a). If a positive deep learned feature has a positive value for a shape

feature at the same position, we indicate a connection between them. So there are

12 connections between 𝑟3 and 𝑡13 in Fig. 4(a). In the connectivity graph, the 𝑥-axis

represents 𝑖th block, and the 𝑦-axis indicates the connection between features 𝑟𝑖 and

𝑝𝑖. Each texture-image has been assigned a different colour. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of

this article.)

ass in the ROI. The second group used yellow corresponding to the

ackground, calcium and other characteristics in the ROI. In summary,

hape-related features are learned by texture-images, which are easily

gnored through the next layers in a biased model.

So far, deep learned features and shape features have been extracted

rom the ROIs and texture-images, it is natural to integrate these two

eparated features in the feature fusion block. As a result, a great deal of

he spatial information inherent in shape features is lost. As the number

nd distribution of shape features are different in each case, we propose

connection matrix to do shape feature leaning.

.3.2. Shape feature learning

Inspired by papers by Strange et al. (2014) and Chen et al. (2014),

he connectivity estimation was proposed for microcalcification clus-

er classification. It was shown that the number and distribution of

icrocalcifications can be used for classification purposes.

In our study, we used the number and distribution of shape features

earned from texture-images. We build the connectivity between deep

earned features and shape features. To do so, we define 𝑟𝑖 as deep

earned features of the 𝑖th dense block of the ROIs, and 𝑡𝑝𝑖 as shape

eatures of the 𝑖th dense block of the 𝑝th texture-image. Here, 𝑝 ∈ 1, 2
epresents the texture-images homogeneity and auto-correlation, respec-

ively. 𝑖 ∈ 1, 2, 3, 4 represents 𝑖th dense block. Features are extracted
rom the four dense blocks of the trained DenseNet121 to increase the

obustness of the proposed method. The resulting connectivity graph

orresponding to the 𝑟3 and 𝑡13 in Fig. 4(a) is shown in Fig. 5 .

After generating a connectivity graph of each sample, a connection

atrix inspired by Pan et al. (2021) can be extracted to capture the

onnectivity properties of shape features. The connection matrix will

onstitute the feature space for the classification of breast lesions.

ere, we use 𝐶 =
{
𝑐𝑝𝑖

}
to represent a connection matrix. 𝑐𝑝𝑖 denotes

the number of connection between features 𝑟𝑖 and 𝑡𝑝𝑖. The connection

atrix is defined as follows:

𝑝𝑖 =⇑ 𝑟𝑖 ⊙ 𝑡𝑝𝑖 ⇑0 𝑓𝑜𝑟 𝑝 ∈ 1, 2 𝑓𝑜𝑟 𝑖 ∈ 1, 2, 3, 4 (5)

here ⊙ represents a Hadamard product, ‖∗‖0 means the number of
on-zero coordinates. Assuming the example in Fig. 4(a), the connec-

ion matrix size is 2 × 4, representing 2 texture-images and 4 blocks as
hown in Fig. 6.

.3.3. 𝑘-nearest neighbors

The 𝑘-nearest neighbors (𝑘NN), which has been successfully applied

in previous studies (Papernot and McDaniel, 2018; Ortega-Martorell

et al., 2022), can be used to increase the model confidence estimated by

the distance between the test case and the model’s training samples. For
5

Fig. 6. Connection matrix calculation of the example deep learned features and shape

features in Fig. 4(a). The connection matrix of size 2 × 4. Here, 𝑝 = 1 indicates texture
homogeneity and 𝑝 = 2 indicates auto-correlation, and 𝑖 means 𝑖th dense block.

the proposed method, 𝑘NN is utilised to integrate shape features into

the classifier layer to solve the biased learning problem. To achieve this,

we use 𝑘-nearest neighbors to find 𝑘 training samples whose connection

atrices are closest to a test case and use the neighbours to further

mprove the CNN’s diagnosis.

Using 𝑁 mammogram ROIs as the training samples can be indicated

s {𝑋𝑛, 𝐶𝑛, 𝑌 𝑛}𝑁
𝑛=1, where 𝑋𝑛 ∈ 𝑅224×224 represents the 𝑛th ROI, 𝐶𝑛

∈ 𝑅2×4 represents the connection matrix corresponding to the 𝑛th ROI,
nd 𝑌 𝑛 = (1, 0) or 𝑌 𝑛 = (0, 1) is the corresponding label indicating a
enign or malignant case.

The test case follows similar steps as the training method (see

ig. 1). Firstly, deep learned features are extracted from the test case

nd a connection matrix 𝐶 ′ =
{
𝑐′
𝑝𝑖

}
is calculated. Then, we use 𝑘-

nearest neighbors based on the Euclidean distance to find the 𝑘 training

samples whose connection matrices are closest to this test case. The

distance between the test case and 𝑘-nearest training samples is defined

as {𝑑𝑛|𝑛 ∈ 1, 2,… , 𝑘}:

𝑑𝑛 = ‖‖𝐶 ′ − 𝐶𝑛‖‖𝐹 𝑓𝑜𝑟 𝑛 ∈ 1, 2,… , 𝑘 (6)

where ‖∗‖𝐹 means the Frobenius Norm. Given the test case’s prediction
(𝑜1, 𝑜2) from the trained DenseNet121 and its 𝑘-nearest training sam-

les, we regard the 𝑘-nearest training samples as confidence to confirm

he classification of the test case.

efinition 1. Confidence indicates how likely the prediction is to be

orrect according to 𝑘-nearest training samples, The confidence of the

est case with each label is defined as (𝐵𝑤,𝑀𝑤):

𝐵𝑤 =
𝑘∑

𝑛=1
𝑑𝑛 ∶ 𝑌 𝑛 = (1, 0)

𝑀𝑤 =
𝑘∑

𝑛=1
𝑑𝑛 ∶ 𝑌 𝑛 = (0, 1)

(7)

here 𝐵𝑤 is the distance accumulation of nearest training samples

hose labels are benign, and 𝑀𝑤 is the distance accumulation of

earest neighbours whose labels are malignant. When 𝐵𝑤 is high, there

is stronger support for the benign label assigned to the test case in the

training samples. Instead, when 𝐵𝑤 is low, it means no training samples

upporting the benign label.

efinition 2. We use 𝐵𝑤 to multiply 𝑜1 to calibrate the prediction of
, we use 𝑀 to multiply 𝑜
the trained DenseNet121. The same as 𝑀𝑤 𝑤 2
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Fig. 7. Test error of 𝑘NN classifier for our connection matrix.

to calibrate the prediction of the trained DenseNet121. Considering 𝐵𝑤

or 𝑀𝑤 is able to be zero, the calibration of the trained DenseNet121

(𝑜′1, 𝑜
′
2) is defined as:

𝐵𝑤 × (1, 0) × 𝑜1 +𝑀𝑤 × (0, 1) × 𝑜2 ∶ 𝐵𝑤 ≠ 0,𝑀𝑤 ≠ 0
(1, 0) × 𝑜1 +𝑀𝑤 × (0, 1) × 𝑜2 ∶ 𝐵𝑤 = 0,𝑀𝑤 ≠ 0
𝐵𝑤 × (1, 0) × 𝑜1 + (0, 1) × 𝑜2 ∶ 𝐵𝑤 ≠ 0,𝑀𝑤 = 0

(8)

f 𝐵𝑥 or 𝑀𝑥 is zero, we keep the corresponding trained DenseNet121’s

rediction. The predicted label for the test case is the one assigned the

argest empirical 𝑜′-value, i.e. argmax𝑂(𝑜′1, 𝑜
′
2).

. Results and analysis

.1. Implementation details

In the proposed model, the classification performance depends on

he number of neighbours. In order to find the best performing value

f 𝑘, we have compared results obtained with the 𝑘NN classifier to

chieve the final benign or malignant classification. Fig. 7 shows the

erformance on the test dataset when 𝑘 is in the 1–50 range. We find

he accuracy curve is smoother after 𝑘 = 7. Considering a higher value
will increase the computational complexity of the calibration, so, we

hoose 𝑘 = 7 to assess the performance of the proposed model (see
Fig. 7).

3.2. Comparison with state-of-the-art

Additionally, we have compared the proposed model with two

related state-of-the-art interpretable deep learning models which pro-

vide modified CNNs to improve their performance. The results are

listed in Table 2, where the performance of these compared meth-

ods are obtained from the results presented in their papers. All the

listed algorithms achieved interpretation of test cases using 𝑘-Nearest

Neighbors.

Papernot and McDaniel (2018) has achieved high performance on

the MNIST data. MNIST is a dataset of simple handwritten digits, it will

be easier for the model to do classification.

Ortega-Martorell et al. (2022) tried to improve the breast mass clas-

sification problem. However, they did not achieve improved accuracy

compared with the initial CNN model.

The proposed model not only learns features that represent data

from classical DenseNet121 but also learns shape features from texture-

images, and combines these features to do the final classification to
achieve improved accuracy.

6

Fig. 8. Accuracy distribution analysis for classical DenseNet121 and proposed-

DenseNet121, showing a box plot indicating a paired comparison.

3.3. The signification of shape feature learning

Ten-fold cross-validation was employed to assess the effectiveness

of the proposed model. The average accuracy on cross validation,

demonstrating the classification performance representing the pro-

posed model. We first compare the proposed model with the classical

DenseNet121. Average accuracy on cross validation in each model was

estimated as 71.35 ± 2.66% for classical DenseNet121, 73.89 ± 2.89%
for the proposed-DenseNet121. To further characterise performance,

a 𝑡-test is used to compare the accuracy of the classical DenseNet121

and the proposed-DenseNet121, which showed a statistically significant

difference (𝑝 = 0.00036), with further details provided in the box-plot
shown in Fig. 8.

We are interested in studying the importance of the shape fea-

ture in the learning process. We replaced DenseNet121 with several

well-known CNN backbone architectures, e.g. VGG16 (Simonyan and

Zisserman, 2014), Resnet50 (He et al., 2016). The classification com-

parison between classical CNNs and the proposed-CNNs has been listed

in Table 3. It can be observed that all the proposed-CNNs achieve

improved accuracy compared with the classical CNNs, demonstrating

the advantage of integrating shape feature learning into CNNs.

3.4. 𝑘-Nearest neighbors visualisation of the test cases

Similar to the study by Ortega-Martorell et al. (2022), which pro-

posed that the 𝑘-nearest training samples can be utilised as explanations

of the predictions. Fig. 9 shows a number of examples where the

proposed-DenseNet121 and classical DenseNet121 are compared and

showing (in)correct classification. It also provides three nearest training

samples for the selected test cases. The neighbours can provide insight

into which characteristics are used for diagnosis and why the cases were

classified.

For example, (1) for both cases 4843 and 5499 – two cases that were

misclassified by DenseNet121 but correctly classified by the proposed-

DenseNet121 – the associated metadata shows that our method uses

factors not limited to calcification, such as the shape of the mass.

Especially, patient 656 has the same shape mass; (2) For four misclas-

sified cases in our proposed-DenseNet121 (patient 7878, 3715, 599,

1677), our method is based on the trained DenseNet121 and uses

positive deep learned features learned from the ROI as a benchmark

to build connection matrix. Some of the less useful characteristics

in the trained DenseNet121 will be retained in our model and these

might be the cause of failure cases. However these misclassified cases

could be used to understand the decision-making process for failure

cases. For example, for case 7878: the associated metadata indicates

that the trained DenseNet121 may have used incorrect information to

make a decision, even if the decision is correct, and for case 1677:
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Fig. 9. Example cases to indicate the performance of the developed approach. Each type contains two test cases with different labels. Test cases are represented with added notes

arked with a blue background. The three nearest neighbouring cases are visualised with added notes marked with an orange background. (For interpretation of the references

o colour in this figure legend, the reader is referred to the web version of this article.)
Table 2

Comparison of proposed model with two recent studies.

Datasets Accuracy Method

CNNs modified-CNNs Explanation of test cases Improved accuracy

Papernot and McDaniel (2018). MNIST 99.2% 99.1% ✓ ×
Ortega-Martorell et al. (2022). CBIS-DDSM 72% 72% ✓ ×
Proposed-DenseNet121. OMI-DB 71.35% 73.89% ✓ ✓
Table 3

Breast mass classification of classical CNNs and proposed-CNNs on OMI-DB.

CNNs Accuracy 𝑘 𝑝−value

DenseNet121 71.35 ± 2.66%
7 0.00036

proposed-DenseNet121 73.89 ± 2.89%

VGG16 70.3 ± 2.56%
7 0.00026

proposed-VGG16 72.9 ± 2.31%

Resnet50 67.3 ± 3.54%
7 0.0007

proposed-Resnet50 71.1 ± 3.39%

the associated metadata provides case 727 which has the same shape

as mass resulting in the trained DenseNet121 making the incorrect

prediction; (3) If the trained DenseNet121 uses the right characteristics

to make correct predictions, cases 643 and 5669 show our model can

retain the same characteristics resulting in correct predictions.

Fig. 10 compares classical DenseNet121 with the proposed-

DenseNet121 for three breast lesions. To gain a better understanding

of the DenseNet121 behaviour, we extracted deep learned features

from four dense blocks and viewed them in colour. The seven nearest

training samples of each test case are also provided to compare with the

test case. Test case 643 is a breast lesion containing only a mass. The

DenseNet121 makes a correct classification, however, the highlighted
7

areas are distributed over the different blocks. The associated metadata

provided by our model finds four training samples that have a mass and

two samples that have calcifications. Our model not only learns features

that represent a mass but also retains some features learning that char-

acterise calcium. In case 4273, the associated metadata indicates there

are some features representing a mass or other factors also activated

by the DenseNet121 which are illustrated by two neighbouring cases:

5364 and 824. Test case 5499 is a breast lesion containing a mass

and calcium. There are some features representing a mass which are

also activated by the DenseNet121, but they have less effect on the

prediction. The associated metadata shows our model used the features

representing calcium and used case 656 as confidence to confirm the

prediction of the DenseNet121.

4. Discussion

The focus of this work is to construct a breast cancer diagnosis

model able to (1) overcome biased learning when the model is learned

on a limited dataset; (2) understand the characteristics of a patient and

facilitate the decision-making process in breast cancer diagnosis.

To illustrate how it works, we conduct a comparative analysis

between our proposed method and some recent studies. For biased

learning, Li et al. (2021) proposed extracting shape features by using
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Fig. 10. Comparison of DenseNet121 predictions and proposed-DenseNet121 on three test cases. Deep learned features are extracted from four dense blocks and viewed in colour.

Seven nearest training samples of each test case are visualised. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
binary masks and texture features from CNNs. They integrated these

two separate features to achieve improved accuracy. The binary mask

was produced by an automatic mask segmentation algorithm. How-

ever, some public datasets such as OMI-DB do not have binary mask

labelling. It is difficult to evaluate the shape features learned from the

binary mask. Furthermore, there is no assessment of whether CNNs use

shape features to do diagnosis.

For interpretability, Papernot and McDaniel (2018) estimated the

distance between deep learned features extracted from a test case and

training samples. This estimation was used to find 𝑘-nearest training

samples whose labels matched the prediction on the test case and then

used training samples to explain the prediction. However, the computa-

tion is high because the distance is calculated in high-dimensional deep

learned features. Ortega-Martorell et al. (2022) extracted deep learned

features that come from one classifier layer and did a dimensional re-

duction to transform high dimensional features into a two-dimensional

space (created using the training samples). Mapping a test case to the

two-dimensional space, where it would provide a prediction based on

its neighbouring training samples. The results demonstrated a good

visualisation of the decision-making process for CNNs, but it did not

achieve improved accuracy compared with the initial CNNs.

Returning to the desired properties of the proposed model: (1)

Accurate information, such as the shape of mass is used for model
8

diagnosis. Fig. 4 shows deep learned features across the different

layers of the trained DenseNet, which provide an indication of the

factors considered by the model for diagnosis; (2) Less computation:

HiResCAM is utilised to convert each high-dimensional deep learned

feature into a two-dimensional matrix. This property is beneficial to

the 𝑘-nearest neighbors approach in high dimensions; (3) Improved

accuracy is achieved. Table 3 compares the accuracy of CNNs and

the proposed-CNNs. We not only learn features of data by CNNs but

also learn the shape features, and combine them to do the final clas-

sification; (4) Decision-making understanding is achieved by finding

𝑘-nearest training samples supporting the prediction. Fig. 9 shows that

the proposed model can produce a visualisation of the decision-making

process in the model. For example, the associated information that

comes from the nearest training samples allows us to understand how

the model classification process works, such as the shape or type of

lesions and the BI-RADS scores.

As shown by the performance of the proposed model, there is sig-

nification room for improvement. This is likely because of the variable

morphology of masses and microcalcifications, it will be difficult for

CNNs to do benign or malignant classification for a lesion. Inspired

by Hamidinekoo et al. (2018a) and Ortega-Martorell et al. (2022),

mass and calcium are both common and important symbols in mam-

mography for breast cancer detection and have individual successful
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applications in CNNs, future work could consider dual-path CNNs to
do mass classification and calcium classification separately, and then
combine them to improve the model’s performance.

5. Conclusion

In this study, we first investigate the unbiasedness of a CNN for
breast cancer diagnosis. Shape features are learned by texture-images,
which are easily ignored in CNN. In order to add these features to the
underlying classifier of the CNN, we propose a connection matrix for
shape feature learning and use 𝑘-nearest neighbors to find 𝑘-nearest
raining samples whose connection matrices are closest to the test case.
hese neighbours are regarded as confidence to confirm the classifica-
ion of the test case. When evaluated on OMI-DB we achieved improved
iagnostic accuracy 73.89 ± 2.89% compared with 71.35 ± 2.66% for the
initial CNN model, which showed a statistically significant difference
(𝑝 = 0.00036). We also show a visualisation of 𝑘-nearest training
samples to better understand the characteristics of a test patient and
facilitate failure analysis.
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