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Abstract

Computer-aided diagnosis (CAD) systems can be employed to help classify

mammographic microcalcification clusters. In this paper, a novel method for the

classification of the microcalcification clusters based on topology/connectivity

has been introduced. The proposed method is distinct from existing techniques

which concentrate on morphology and texture of microcalcifications and sur-

rounding tissue. The proposed approach used multiscale morphological relation-

ship of connectivity between microcalcifications where connected chains between

nearest microcalcifications were generated at each scale. Subsequently, graph

connectivity features at each scale were extracted to estimate the topological

connectivity structure of microcalcification clusters for benign versus malignant

classification. The proposed approach was evaluated using publicly available

digitized datasets: MIAS and DDSM, in addition to the digital OPTIMAM

dataset. The classification of features using KNN obtained a classification ac-

curacy of 86.47 ± 1.30%, 90.0 ± 0.00%, 82.5 ± 2.63%, 76.75 ± 0.66% for the

DDSM, MIAS-manual, MIAS-auto and OPTIMAM datasets respectively. The

study showed that topological/connectivity modelling using a multiscale ap-

proach was appropriate for microcalcification cluster analysis and classification;

topological connectivity and distribution can be linked to clinical understanding

of microcalcification spatial distribution.
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1. Introduction

Breast cancer remains the most common cause of cancer deaths among

women worldwide [1]. The best way to reduce the mortality rate is early detec-

tion and treatment at an appropriate time. Mammography remains the most

effective primary imaging tool for monitoring and detection of abnormalities in5

breast tissue [2]. Mammography helps in identifying abnormalities before they

provide physical symptoms thus giving a higher chance of treatment at an earlier

stage [3]. Types of abnormalities detected in mammograms are masses, micro-

calcifications and architectural distortions. These are classified as malignant

based on certain characteristics like size, shape, form, number, density, dis-10

tribution pattern and cluster pattern [2]. Breast microcalcifications are small

spots of calcium deposits which are represented as white specks in mammo-

grams [4, 5] as shown in Figure 1. Though most detected microcalcifications

are benign, the presence of fine and granular patterned microcalcifications could

be an early indication of breast carcinoma requiring further investigation and15

potentially treatment [4]. Irrespective of all the benefits of mammography, it

has limitations which makes the categorization of detected lesions as benign or

malignant difficult for radiologists. Since a mammogram is a two-dimensional

representation of a three-dimensional breast, during the imaging process it may

superimpose breast tissue and ducts producing patterns like abnormal lesions.20

It could alter the appearance of malignant lesions leading to incorrect assess-

ment [2].

Due to limitations at screening and the number of mammographic images

to be diagnosed, approximately 10% - 30% of breast cancers present in mam-

mograms are missed or misinterpreted by radiologist either due to technical or25

visualization problems [6, 7]. During the evaluation process differences from nor-

mal tissue patterns, architectural distortions, the subtle signs of malignancy are
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Figure 1: Examples of ROI patches of malignant (top row) and benign (bottom row) mam-

mographic microcalcification clusters from MIAS and DDSM dataset, First column: original

patch from DDSM; second column: segmented microcalcifications; third column: original

patches from MIAS; fourth column: segmented microcalcifications, fifth column: original

patches from OPTIMAM; sixth column: segmented microcalcifications.

identified [8]. For the malignancy confirmation of microcalcifications found in

mammogram, image guided core biopsy using ultrasound with specimen radiog-

raphy would be performed [9]. In-order to overcome the limitations of assessing30

large numbers of mammograms through screening programs and to improve the

diagnosis accuracy, Computer-Aided Diagnosis (CAD) systems have been devel-

oped to assist radiologists [10, 11, 12, 13, 14]. Although the efficiency of CAD

systems in cancer detection and diagnosis is under debate [15], CAD techniques

could offer a cost-effective alternative to double reading and it is undergoing35

a paradigm shift with emerging machine learning methods and advanced deep

learning algorithms [16, 17, 18]. The clinical interpretation of microcalcification

remains a difficult task for CAD systems due to the small size of calcification,

low distinguishability from the surrounding dense tissue or overlapping tissues,

and the absence of standard patterns or templates [2, 19, 20].40

Microcalcification clusters (MCC) are a primary sign of breast cancer. The

clinical characterisation of microcalcification clusters is: no fewer than three

microcalcifications in an area of 1 cm2 [19, 21, 22, 23] and the spatial resolution

of mammography (40-100 µm per pixel) with the size of microcalcifications

ranging from 0.1-1.0 mm with an average of about 0.3 mm [19, 23], indicates45

that each microcalcification can be several pixels in diameter. Assessment of
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breast microcalcifications indicates that malignant micro-calcifications tend to

be small and densely distributed (>5 per focus within 1 cm2 ) while benign

micro-calcifications are usually larger, smaller in number and scattered (<4-5

per 1 cm2 ) [23]. The presence of fine, patterned granular micro-calcification50

clusters can be an indication of early breast carcinoma. The uncertainity of

accurately predicting malignancy of MCCs leads to unnecessary biopsies and

patient stress. CAD systems can play a role in reducing false positive results

[24, 25].

A variety of MCC characteristics have been used by CAD systems for classi-55

fication purposes. The features should be reliable, independent, discriminative

and limited in number to enhance overall performance and efficiency of the

CAD system for classification [26]. The literature has used shape, texture,

statistical and cluster features for the classification of abnormalities [26]. For

shape features, both individual and cluster shape features have been consid-60

ered. Shape features, like the size of individual calcification, the number of

calcifications in a cluster, the sum of areas of calcifications in a cluster, the

maximum value of compactness, the maximum standard deviation, the aver-

age roughness, compactness, distribution features, contrast, eccentricity, the

relative distance from the pectoral muscle, shape orientation features, average65

size per calcifications, irregularity, elongation, border gradient strength, local

contrast, central moment, and calcification area have been the most common

features extracted for classification [21, 27, 28, 29, 30]. Statistical features like

surrounding region dependence (SRD), spatial grey-level dependence (SGLD),

grey-level run length (GLRL), grey-level difference (GLD) have been used for70

extracting contrast, entropy, angular second moment (energy), correlation, dif-

ference variance, inverse difference moment, skewness, kurtosis, and intensity

ratio for the classification of abnormalities [31, 32, 30, 33]. Similarly, multiscale

texture features have been extracted using variants of wavelets with various

scaling functions [21, 34, 35, 36] and fractal methods [37, 38]. Recently, deep75

learning techniques have been developed for detection and for classifying the

lesions in mammograms [39, 40, 41, 42].
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Chen et al. [43, 44] evaluated the topology of microcalcification clusters by

constructing graphs at multiple scales and was unlike existing approaches which

had concentrated on individual microcalcification morphology. Subsequently, a80

multiscale topological feature vector with subgraph features and average degree

of nodes were investigated. The robustness of the method and effect of dataset

size was evaluated by selecting samples at multiple scales for classification of

clusters into benign and malignant cases. Similarly, Suhail et al. [45] used a

tree based topological approach for the classification of microcalcification focus-85

ing on the distribution and connectivity of microcalcification. Features like the

height of the tree and the number of leaf nodes were evaluated for the classifica-

tion process. Topology-based classification showed the potential of topological

and distribution features of microcalcification in mammogram for abnormality

classification.90

Our project explores the topological and distributional connectivity of mi-

crocalcifications for classifying the abnormality as benign or malignant. To

make the method robust with respect to the size of the microcalcifications and

the distribution within the clusters, a multi-scale approach was employed. The

proposed method utilizes the closeness and topology of microcalcification in95

representing clusters at multiple scales.

2. Data

The data used for the evaluation was from two publicly available database:

the Digital Database for Screening Mammography (DDSM) [46] and the Mam-

mographic Image Analysis Society (MIAS) database [47], from which relevant100

regions of interest (ROIs) were extracted for evaluation. The mammograms

from the Digital Database for Screening Mammography (DDSM) were digitized

by either of four scanners; DBA M2100 ImageClear (42 µm per pixel, 16 bits),

Lumisys 200Laser (50 µm per pixel, 12 bits), Howtek MultiRad 850, Howtek

960 (43.5 µm per pixel, 12 bits). The BIRADS classification for stages of malig-105

nancy and benign cases were provided by expert radiologist and were available
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as part of the database. A total of 289 mammogram patches of varied sizes

with microcalcifications from DDSM were evaluated, where 131 mammographic

patches were reported as malignant cases while 158 mammographic patches

were marked as benign cases. All the microcalcification clusters in the images110

were histologically confirmed. The average size of these patches was 482×450

pixels though the proposed method worked independent of the patch size. The

automatic detection of microcalcifications was done using the segmentation ap-

proach developed by Oliver et al. [48]. Oliver’s detection method estimated all

the morphological features of individual microcalcifications using local image115

features which was then trained by a pixel-based-boosting classifier to select the

most salient features. Thereafter, the microcalcfication clusters were estimated

based on the local neighbourhood for each microcalcifications detected from the

previous stage as shown in Figure 1.

Similarly, mammographic ROIs from the MIAS database were also used for120

the evaluation process. The MIAS database contains 322 digitized mammo-

grams of 161 women. Each image was digitized to 50 micron pixel edge with a

Joyce-Loebl scanning microdensitometer representing each pixel with an 8 bit

grey-level. Image ROIs with microcalcification clusters were extracted with an

image patch size of 512 ×512 pixels. There were in total of 20 images in the125

MIAS dataset containing microcalcification cluster ROIs with 11 benign clus-

ters and 9 malignant cases which were all categorised by histology. In order

to estimate the effect of MC cluster segmentation for the proposed classifica-

tion method, MC’s in ROIs where also manually annotated (MIAS-manual) in

addition to segmentation (MIAS-auto) by the method developed by Oliver et130

al. [48].

In addition to DDSM and MIAS, the digital dataset OPTIMAM was used.

The database is being developed. More information on the OPTIMAM database

can be seen from http://commercial.cancerresearchuk.org/ optimammammog-

raphy - image-database-and-viewing-software. In the proposed method, 286135

mammographic images with microcalcification clusters were used for estimating

the robustness of the algorithm, where 136 ROIs were histologically reported
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as benign and 150 were categorised as malignant. The microcalcifications were

segmented using the detection approach developed by Alam et al. [49]. The

extracted RoIs are initially enhanced using a wavelet-based algorithm. The seg-140

mentation of microcalcifications were then done through applying a sequence of

interpolation and morphological operations on the enhanced RoIs. The entire

RoI image was divided into sub-regions and a bi-cubic interpolation method was

applied to obtain the intensity level of the local background. Then a series of

morphological operations were used to reduce the over segmentation. In addi-145

tion, to reduce the false positive responses, the image was divided into 100×100

blocks, and if a block contained fewer than 3 objects those objects were removed.

3. Proposed methodology

The proposed approach is based on the clinical perception of the distribution

and morphology of microcalcifications. It has been observed that benign micro-150

calcifications are of larger size and distributed widely compared to malignant

cases with smaller and closely distributed microcalcifications. The proposed

methodology used automatically or manually segmented microcalcifications in

patches as the input which were binarized and denoised for the classification

process. The closeness of microcalcifications in ROIs was estimated through155

connected chain graphs at different scales followed by the extraction and classi-

fication of connected chain graph features at respective scales for malignant or

benign classification. A detailed description showing each step of the process

(using an image from the DDSM with ROI size 152 × 224) is shown in Fig-

ure 2, the pseudo-code is presented in Algorithm 1 and details can be found in160

subsequent subsections.

Pre-processing. The automatically or manually segmented mammographic ROIs

are binarized for further morphological operations. The pixels representing the

abnormal tissue from the segmented ROIs are represented with a pixel value ’1’

and normal tissue or background is using pixel value ’0’ after using a probabil-165

ity threshold of luminence level of 0.3. Denoising is performed on the binary
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Figure 2: Detailed representation of the proposed multi-scale connected chain graph method

for benign/malignant microcalcification classification.

image by removing regions which are less than 4 pixels in size considering those

as noise or as low probability microcalcification regions. The binarization and

pre-processing procedures are demonstrated in detail (using an image from the

DDSM with ROI size 152 × 224) in Figure 3.170

Constructing Connected Chains at Multiple Scales. Following denoising, the

centroid of each microcalcification was calculated for finding the nearest mi-

crocalcifications. Initially, all centroids were considered as independent nodes.

(a) (b) (c) (d)

Figure 3: Binarization and denoising of automatically detected microcalcification cluster; (a)

original mammographic patch with microcalcifications, (b) microcalcification cluster image,

(c) binarized image, (d) denoised image.
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The number of scales was set (e.g. S=4). We selected S equal to four because a

large scale number with large structuring element for dilation can morphologi-175

caly merge all the microcalcifications at an early stage making it a single unit.

At each scale a morphological dilation operation using a disc shaped structuring

element with radius size of 5 pixels was performed for estimating the connec-

tivity between microcalcification centroids. Similarly, reducing the size of the

structuring element would need additional scales to merge the microcalcifica-180

tions.

The distance between each centroid point was calculated to estimate the

closeness in distribution at each scale generated by each distance map. Subse-

quently, connected chains were generated to describe the morphological distri-

bution of each microcalcification with respect to other microcalcifications. For185

the first scale, nodes were connected which were distributed within a threshold

distance of 40 pixels (an approximate threshold distance when 1 cm distance

translated based on resolution). The Euclidean distance measure [50] was used

for distance calculations. A distance map was created representing all the mi-

crocalcifications (by node number) in the denoised patch and the nodes which190

were in the range of the threshold distance to each microcalcification (mentioned

as the closest nodes). To generate the connected chain pattern, the initial node

from the distance map was selected as the first node in the chain. The closest

node to it from the list was connected to it, followed by connecting the closest

node to the lastly connected node till all the closest nodes in the visted node195

list were connected. The procedure continued by selecting the next unvisited

node (from the node number list) to start the next chain. The procedure is

repeated recursively until all the nodes were visited and connected. So, each

connected chain represented a sub-cluster of microcalcification. For the next

scale, morphological dilation [51] using a disk structural element of size 5 was200

performed on the binary microcalcifications and the centroids and distance map

were calculated followed by the connected chain estimation. The chain gener-

ation procedure is repeated for all the scales using a disc structuring element

incremented by size 5.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 4: Connectivity pattern of microcalcifications with morphological dilation at increas-

ing scales. (a) original image ROI, (b) segmented microcalcification mammographic ROI, (c)

connected chains at scale 1, (d) connected chains at scale 2 (microcalcifications have started

merging), (e) connected chains at scale 3 (most of microcalcifications have merged), (f) con-

nected chain at scale 4 (majority of microcalcifications overlapped forming a single unit).

The connected chains at each scale represented the arrangement or pattern of205

microcalcification in the clusters. The connected chains structure differed with

each scale as some dilated microcalcifications merged giving a single centroid for

distance estimation. The closely distributed microcalcifications merged at the

initial stages of dilation forming a single unit. Therefore, the morphological dila-

tion process gave different connectivity patterns between the microcalcifications210

forming different independent sub-clusters. The detailed scale space clustering

is illustrated in Figure 4. Since the malignant microcalcifications were closely

located, with increasing scales they tended to merge early as a region while the

benign microcalcifications needed additional scales to be united as they were

more diffusely distributed.215

Feature extraction. In the connected chain each node is the centroid of a mi-

crocalcification and is considered independent. It is noted that the number of
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connections between nodes decreased with increasing scales as the microcalci-

fications started merging. The graph features of the connected chains at each

scale were extracted and concatenated to form the feature vector for classifica-220

tion. The cluster properties calculated at each scale were the number of clusters,

the benign clusters (the chains containing less than 5 nodes), the number of ma-

lignant chains (the chains with more than 5 nodes), the size of the longest chain,

the number of independent nodes/leaf nodes.

Classification. The classification of mammographic patches into benign or ma-225

lignant using the connected chain features at different scales was performed

using classical k nearest neighbour (kNN) [52] on the MIAS, DDSM and OP-

TIMAM databases. The classical kNN classifier is an instance based learning

approach [52]. We selected the kNN classifier as most of the literature used the

classical kNN approach although it should be clear that alternative classifiers are230

possible. The kNN classifier was based on simple majority voting unless equal

class probability were indicated and the Euclidean weighted approach was used

as the distance measure. The features extracted from each scale as mentioned

before were fed into a kNN classifier.
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Algorithm 1 Multi-scale connected chain algorithm

Input: Automatically or manually segmented microcalcification cluster RoIs,

threshold distance, number of scales

Output: Multi-scale connected chain features to classify microcalcification

clusters as benign or malignant.

1: Binarize and denoise the image to remove low probability microcalcification

regions from RoI

2: Compute the centroids of each microcalcifications considering them as in-

dependent nodes of the chain

3: for scale less than 5 do

4: Generate a distance map by computing the closest nodes to each node

based on the threshold distance.

5: for scan each node in the distance map node-list do

6: Merge the closest node to each node in distance map to form a chain

till all nodes in the node list are visited
endFor

7: Extract the chain features from each scale like number of independent

nodes in each scale, number of malignant chains (chains with more than

5 nodes), number of benign nodes (chains with less than 5 nodes) and

the size of longest chain.

8: Increment the scale number

9: Dilate the microcalcification objects in RoIs using a disc structuring

element of size 5 pixels
endFor

10: Generate the feature vector for classification by merging the features ex-

tracted at different scales.

4. Experimental Results and Discussion235

To evaluate the performance of the proposed methodology, the graph features

extracted at different scales were used with a leave-one-out and ten fold cross

validation (FCV) approaches on the MIAS, DDSM and OPTIMAM datasets to
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investigate how significantlty these approaches affected the classification accu-

racy. We used a kNN classifier with a ten-run ten-fold cross validation scheme240

to calculate the accuracy of classification on different dataset. In order to find

the best k value for the KNN classifier for different datasets, we performed the

classification using different k values as shown in Figure 5. The k value was

selected based on the best classification accuracy. An example of the variation

of classification accuracy with k values for the DDSM dataset (highest CA%245

when k=3) is shown in Figure 5. The same procedure was applied for the MIAS

and OPTIMAM datasets for selecting the k value for the kNN classifier. The

best classification results using the kNN (k=3) classifier on the DDSM dataset

is illustrated in Table 1, which shows an average classification accuracy (CA%)

of 86.47 % ± 5.94 % for a 10 run 10 fold cross validation and 87.5% for the250

leave-one-out approach. (see Table 4). The sensitivity/recall (TP/(TP+FN))

of the test, which measures the ability of the test to correctly identify those

malignant cases was found to be 86.76%, a precision of 86.86% with an F-score

(to measure the performance of the test for the positive class) of 86.34% for the

DDSM dataset.255

Table 1: Confusion matrices for automatic classification using a kNN classifier for 10-FCV

(CA=87.88%) and leave-one-out (CA=87.54%) approaches for DDSM.

Automatic Classification

10 -FCV Leave-one-out

Benign Malignant Benign Malignant

Truth Data
Benign 149 9 148 10

Malignant 26 105 26 105

Similarly, the classification of microcalcifications as benign or malignant for

the automatically segmented MIAS dataset using the kNN classifier (k=3, see

Figure 5) gave a classification accuracy (CA%) of 82.5 % ± 2.63 % for 10 run

10-FCV and 80.0% for leave-one-out approaches (see Table 2 (for the best clas-

13



Figure 5: Variation of classification accuracy (CA%) with k-values for KNN classifier (The

dotted line shows the trendline of classification accuracy with-respect to k values).
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sification accuracy) and Table 4). The test results shows a sensitivity of 82.5%,260

precision (TP/TP+FP) of 82.25% with F-score of 83.05%. In order to esti-

mate the importance of segmentation accuracy in classification, the MIAS ROIs

were manually segmented (MIAS-manual). The classification of manually seg-

mented MCs shows a classification accuaracy of 90.0% for 10 run 10-FCV and

leave-one-out approaches with sensitivity, precision and F-score to be 90.00%265

respectively.

Table 2: Confusion matrices for automatic classification using a kNN classifier for 10-FCV

(CA=85.0%) and leave-one-out (CA=80.0%) approach for MIAS-auto and 90.0% for MIAS-

manual.

Automatic Classification

10 -FCV leave-one-out

Benign Malignant Benign Malignant

Truth Data, MIAS-auto
Benign 10 1 10 1

Malignant 2 7 3 6

Truth Data MIAS-manual
Benign 10 1 10 1

Malignant 1 8 1 8

Subsequently, the classification of microcalcifications as benign or malignant

for the OPTIMAM dataset using the kNN classifier (k=11, see Figure 5) gave

a classification accuracy (CA = (TP+TN)/(TP+TN+FP+FN)) of 76.75 % ±

0.66 % and 77.27% for 10 run 10-FCV and leave-one-out approaches (see Ta-270

ble 4), respectively. The best classification accuracy for the 10 fold cross valida-

tion is illustrated in Table 3. The sensitivity/recall for the classification test for

OPTIMAM using the kNN classifiers was found to be 76.68% with a precision

(measure of classifiers exactness) of 76.69%, attaining F-score to be 76.63%.

The second evalaution process used for investigating the efficiency of classi-275

fication was performed by ROC (Receiver Operating Characteristic) under the

curve analysis. In our approach, the binary classification, the TPR (True Posi-

tive Rate) represented the number of correctly classified malignant cases to the

15



Table 3: Confusion matrices for automatic classification using a kNN classifier for 10-FCV

(CA=77.27%) and leave-one-out (CA=77.27%) approach for OPTIMAM.

Automatic Classification

10-FCV leave-one-out

Benign Malignant Benign Malignant

Truth Data
Benign 99 37 99 37

Malignant 28 122 28 122

Table 4: The classification accuracy fro MIAS, DDSM and OPTIMAM datasets for 10 run

10-FCV and leave-one-out approaches.

CA

10-FCV Leave-one-out

Dataset

MIAS-auto 82.50 % ± 2.63 % 80.0%

MIAS-manual 90.00 % ± 0.00 % 90.0%

DDSM 86.47 % ± 1.30 % 87.5%

OPTIMAM 76.75 % ± 0.66 % 76.9%

total count of malignant cases. Similarly, the FPR (False Positive Rate) is de-

fined as the number of incorrectly classified benign cases to the total number of280

benign cases in the dataset. AUC (Area Under the Curve, Az) is a measure of

sensitivity and specificity showing the overall performance of a diagnostic test

and is interpreted as the average value of sensitivity for all possible values of

specificity [53]. The area under the ROC curve for the three datasets is shown

in Table 5 for the 10 run 10-FCV.285

While performing a quantitative comparison with alternative state of art

methods which used topological methods for microcalcification classification us-

ing the DDSM dataset, our results are in-line with the results obtained by Chen

et al. [44] using multiscale graph modelling with a classification accuracy (CA%)
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Table 5: The area under the ROC curve for the MIAS, DDSM and OPTIMAM datasets for

10 run 10-FCV and leave-one-out approaches.

Az

10-FCV Leave-one-out

Dataset

MIAS-auto 0.848 ± 0.013 0.83

MIAS-manual 0.899 ± 0.000 0.89

DDSM 0.899 ± 0.008 0.90

OPTIMAM 0.776 ± 0.005 0.78

of 85.2 % ± 5.7 % for a set of 300 ROIs without feature selection and Suhail et290

al. [45] with classification accuracy of 91.0% using tree-based modelling on a

subset of 129 ROIs from the DDSM dataset. The classification accuracy of our

approach was found to be 86.47 % ± 1.31 % for a set of 289 ROIs from the

DDSM dataset. Additional comparison of our results with those achieved by

other related work with the same datasets are shown in Table 6.295

Table 6: Comparison of our results with those achieved by related work.

Feature Database Cases Classifier Method Result

Cluster MIAS 25 SVM Papadopoulos et al. [24] Az=0.81

Shape DDSM 183 Threshold Ma et al. [54] Az=0.96

Intensity, shape and linear structures DDSM 150 ANN/SVM Ren et al. [55] Az=0.94

Topology & location MIAS 20 kNN Ashiru et al. [56] Az=0.95

Topology & location DDSM 280 kNN Ashiru et al. [56] Az=0.75

Law features MIAS 322 SVM Dheeba et al. [57] CA=86.1

Topological features DDSM 300 kNN Strange et al. [22] CA=80%

Topology DDSM 300 kNN Chen et al. [44] CA=85.2 % ± 5.7 %

Tree-based modelling DDSM 129 Majority voting Suhail et al. [45] CA=91%

Connected chain model DDSM 289 KNN George et al. [58] CA=86%

Multiscale connected chain DDSM 289 kNN Ours
CA=86.47 % ± 1.30 %

Az=0.892 ± 0.008

Multiscale connected chain MIAS-auto 20 kNN Ours
CA=82.5 % ± 2.63 %

Az=0.848 ± 0.013

Multiscale connected chain MIAS-manual 20 kNN Ours
CA=90.00 % ± 0.00 %

Az=0.899 ± 0.000

Multiscale connected chain OPTIMAM 286 kNN Ours
CA=76.75 % ± 0.66 %

Az=0.776 ± 0.005
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In addition to the KNN classifier, a 10 FCV was done using a SVM classifier

and this obtained a CA equal to 95.0%, 90.0%, 77.9%, 69.6%, respectively for

MIAS-manual, MIAS-auto, DDSM and OPTIMUM dataset. While comparing

to other topological modelling methods for microcalcification classifications on

the DDSM dataset using the kNN classifier; Strange et al. [22] attained classifi-300

cation accuracy of 80.0% for a set of 300 cases and modelled the relationship be-

tween microcalcification regions in the form of mereotopological barcodes. Sim-

ilarly, Chen et al. [44] utilized the spatial connectivity relationship for building a

multi-scale graph model where two nodes are linked as edge if the corresponding

microcalcifications overlap each other. The method obtained a classification ac-305

curacy of 85.2%± 5.7% for a set of 289 cases. Later Suhail et al. [45] developed

a topological model using the binary tree properties and classified the clusters

as benign/malignant based on the height of the tree and obtained an accuracy

of 55.0% for whole dataset and 91.0% for a subset of 129 images. In-order to

investigate the strength of topological modelling for microcalcification classifica-310

tion, Ashiru et al. [56] conducted a study to compare the topological modelling

by Chen et al. [44] and location based classification by [59] and found topo-

logical models performed better in explaining the microcalcification clusters.

Unlike other toplogical models discussed, we utilize the distributional arrange-

ment of microcalcifications in a cluster to form sub-clusters to represent the315

relative arrangement of benign and malignant microcalcifications and obtained

a classification accuracy of 86.47% ± 1.30% for a set of 289 cases.

Incorrect Classification Results. Though the proposed approach can classify

most of the cases correctly, there were misclassified instances like the mam-

mographic patches shown in Figure 6. The top row ROI was misclassified as320

a malignant case by the proposed approach where the microcalcifications were

closely distributed though they were larger in size and so they merged easily to

become a single cluster with minimum scaling which contradicts the assumption

that benign calcifications are widely spread and needed a higher number of scales

before they overlap. This was unexpected for the proposed approach where we325
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Figure 6: Misclassified examples. First row: a benign ROI reported as malignant, second

row: a malignant ROI reported as benign.

assumed that for benign cases the microcalcifications were widely spread. Sim-

ilarly, the second row represents a malignant ROI reported as benign because

the microcalcifications were widely distributed though they were of small size.

So with a limited number of scales, the merging of microcalcifications were not

possible which led to the extraction of features similar to benign properties.330

From the comparative results between the datasets, it can be concluded that

the method needs a explicitly detected microcalcification cluster and the dataset

resoultion is a factor to be considered as the resolution of the MIAS and DDSM

datasets was similar, (50 microns per pixel) for the OPTIMAM dataset, the

resolution was 70 microns per pixel.335

5. Conclusion and Future Work

Detection and classification of benign and malignant microcalcifications is

an important issue for CAD systems as it can assist in the early diagnosis and

treatment of breast cancer. CAD systems with great accuracy for detection

and classification can act as a second reader of mammographic images and can340

reduce incorrect treatment.

In this paper we have introduced a novel approach considering the topolog-

ical distribution of microcalcifications in mammogram ROIs using a multi-scale

approach. This takes the clinical description of microcalcification distribution

into account for the cluster classification process. The results obtained are sim-345

ilar to techniques reported in the literature for the MIAS and DDSM datasets

for the KNN classifier.
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The proposed algorithm was implemented for a specific number of scales

and the optimum number of scales is an important factor which will be investi-

gated in the future. Similarly, additional datasets will be considered to evaluate350

the algorithm. Simultaneously, the effect of the segmentation method on the

classification results will be studied in more detail. In addition to the micro-

calcification distribution features, the surrounding tissue characteristic features

will be extracted to investigate the classification efficiency as future work.
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