93 research outputs found

    Differential influence of four invasive plant species on soil physicochemical properties in a pot experiment

    Get PDF
    Purpose This study compared the effects of four invasive plants, namely Impatiens glandulifera, Reynoutria japonica, Rudbeckia laciniata, and Solidago gigantea, as well as two native species-Artemisia vulgaris, Phalaris arundinacea, and their mixture on soil physicochemical properties in a pot experiment. Materials and methods Plants were planted in pots in two loamy sand soils. The soils were collected from fallows located outside (fallow soil) and within river valley (valley soil) under native plant communities. Aboveground plant biomass, cover, and soil physicochemical properties such as nutrient concentrations, pH, and water holding capacity (WHC) were measured after two growing seasons. Discriminant analysis (DA) was used to identify soil variables responsible for the discrimination between plant treatments. Identified variables were further compared between treatments using one-way ANOVA followed by Tukey’s HSD test. Results and discussion Plant biomass, cover, and soil parameters depended on species and soil type. DA effectively separated soils under different plant species. DA on fallow soil data separated R. laciniata from all other treatments, especially I. glandulifera, native species and bare soil, along axis 1 (related mainly to exchangeable K, N-NH_{4}, total P, N-NO_{3}, and WHC). Large differences were found between R. laciniata and S. gigantea as indicated by axis 2 (S-SO_{4}, exchangeable Mg, total P, exchangeable Ca, and total Mg). DA on valley soil data separated R. japonica from all other treatments, particularly S. gigantea, R. laciniata, and native mixture, along axis 1 (N-NO_{3}, total N, S-SO_{4}, total P, pH). Along axis 2 (N-NO_{3}, N-NH_{4}, Olsen P, exchangeable K, WHC), large differences were observed between I. glandulifera and all other invaders. Conclusions Plant influence on soil differed both among invasive species and between invasive and native species. Impatiens glandulifera had a relatively weak effect and its soil was similar to both native and bare soils. Multidirectional effects of different invaders resulted in a considerable divergence in soil characteristics. Invasion-driven changes in the soil environment may trigger feedbacks that stabilize or accelerate invasion and hinder re-colonization by native vegetation, which has implications for the restoration of invaded habitats

    The fungal collection of the Jagiellonian University Herbarium (KRA), Kraków, Poland

    Get PDF
    The paper presents a short history of the mycological collection of the Jagiellonian University Herbarium (KRA, Kraków, Poland). The Herbarium holds over 22,000 specimens, including some interesting European and extra-European fungal exsiccata. One of the most valuable fungal collections (including many type specimens) in the Herbarium is that containing Javanese fungi gathered by Marian Raciborski at the end of 19^{th} century

    Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils

    Get PDF
    We studied the effects of invasions by three plant species: Reynoutria japonica, Rudbeckia laciniata,and Solidago gigantea, on arbuscular mycorrhizal fungi (AMF) communities in habitats located within and outside river val- leys. Arbuscular mycorrhizal colonization, AMF abundance and species richness in soils were assessed in adjacent plots with invaders and native vegetation. We also quantified the performance (expressed as shoot mass, chlorophyll fluores- cence, and the concentration of elements in shoots) of two common, mycorrhizal native plants, Plantago lanceolata and Trifolium repens, grown in these soils. The invasions of R. japonica, R. laciniata, and S. gigantea influenced AMF communities compared to native vegetation, but the changes depended on the mycorrhizal status of invaders. The effects of non-mycorrhizal R. japonica were the most pronounced. Its invasion reducedAMF abundance and species richness. In the plots of both mycorrhizal plants, R. laciniata and S. gigantea, we observed decreased AMF species richness in comparison to native vegetation. The AMF community alterations could be due to (i) depletion of organic C inputs toAMF in the case of R. japonica, (ii) plant secondary metabolites that directly inhibit or selectively stimulate AMF species, or (iii) changes in soil physicochemical properties induced by invasions. The effect of invasion onAMF abundance and species richness did not generally differ between valley and outside-valley habi- tats. The invasions affected photosynthetic performance and the concentrations of elements in the shoots of P. lanceolata or T. repens. However, the directions and magnitude of their response depended on both species identity and the mycorrhi- zal status of invaders

    Practical aspects of genetic identification of hallucinogenic and other poisonous mushrooms for clinical and forensic purposes

    Get PDF
    Aim To assess the usefulness of a DNA-based method for identifying mushroom species for application in forensic laboratory practice. Methods Two hundred twenty-one samples of clinical forensic material (dried mushrooms, food remains, stomach contents, feces, etc) were analyzed. ITS2 region of nuclear ribosomal DNA (nrDNA) was sequenced and the sequences were compared with reference sequences collected from the National Center for Biotechnology Information gene bank (GenBank). Sporological identification of mushrooms was also performed for 57 samples of clinical material. Results Of 221 samples, positive sequencing results were obtained for 152 (69%). The highest percentage of positive results was obtained for samples of dried mushrooms (96%) and food remains (91%). Comparison with GenBank sequences enabled identification of all samples at least at the genus level. Most samples (90%) were identified at the level of species or a group of closely related species. Sporological and molecular identification were consistent at the level of species or genus for 30% of analyzed samples. Conclusion Molecular analysis identified a larger number of species than sporological method. It proved to be suitable for analysis of evidential material (dried hallucinogenic mushrooms) in forensic genetic laboratories as well as to complement classical methods in the analysis of clinical materia

    Looking for hidden enemies of metabarcoding : species composition, habitat and management can strongly influence DNA extraction while examining grassland communities

    Get PDF
    Despite the raising preoccupation, the critical question of how the plant community is composed belowground still remains unresolved, particularly for the conservation priority types of vegetation. The usefulness of metabarcoding analysis of the belowground parts of the plant community is subjected to a considerable bias, that often impedes detection of all species in a sample due to insufficient DNA quality or quantity. In the presented study we have attempted to find environmental factors that determine the amount and quality of DNA extracted from total plant tissue from aboveand belowground samples (1000 and 10,000 cm2 ). We analyzed the influence of land use intensity, soil properties, species composition, and season on DNA extraction. The most important factors for DNA quality were vegetation type, soil conductometry (EC), and soil pH for the belowground samples. The species that significantly decreased the DNA quality were Calamagrostis epigejos, Coronilla varia, and Holcus lanatus. For the aboveground part of the vegetation, the season, management intensity, and certain species—with the most prominent being Centaurea rhenana and Cirsium canum—have the highest influence. Additionally, we found that sample size, soil granulation, MgO, organic C, K2O, and total soil N content are important for DNA extraction effectiveness. Both low EC and pH reduce significantly the yield and quality of DNA. Identifying the potential inhibitors of DNA isolation and predicting difficulties of sampling the vegetation plots for metabarcoding analysis will help to optimize the universal, low-cost multi-stage DNA extraction procedure in molecular ecology studies

    New sporocarpic taxa in the phylum Glomeromycota : Sclerocarpum amazonicum gen. et sp. nov. in the family Glomeraceae (Glomerales) and Diversispora sporocarpia sp. nov. in the Diversisporaceae (Diversisporales)

    Get PDF
    Of the nearly 300 species of the phylum Glomeromycota comprising arbuscular mycorrhizal fungi (AMF), only 24 were originally described to form glomoid spores in unorganized sporocarps with a peridium and a gleba, in which the spores are distributed randomly. However, the natural (molecular) phylogeny of most of these species remains unknown. We found unorganized sporocarps of two fungi-producing glomoid spores: one in the Amazonian forest in Brazil (tropical forest) and the second in a forest of Poland (temperate forest). The unique spore morphology of the two fungi suggested that they are undescribed species. Subsequent phylogenetic analyses of sequences of the small subunit–internal transcribed spacer–large subunit nrDNA region and the RPB1 gene confirmed this assumption and placed the Brazilian fungus in a separate clade at the rank of genus, very strongly divergent from its sister clade representing the genus Glomus sensu stricto in the family Glomeraceae (order Glomerales). The Polish fungus was accommodated in a sister clade to a clade grouping sequences of Diversispora epigaea, a fungus that also occasionally produces spores in sporocarps, belonging in the Diversisporaceae (Diversisporales). Consequently, the Brazilian fungus was here described as the new genus and new species Sclerocarpum gen. nov. and S. amazonicum sp. nov., respectively. The Polish fungus was described as D. sporocarpia sp. nov. In addition, the supposed reasons for the low representation of sporocarpic species in the Glomeromycota were discussed and the known distribution of sporocarp-producing Glomeromycota was outlined. © 2019, The Author(s)

    A kettős-ballonos endoszkópia szerepe a vékonybél betegségeinek diagnózisában és kezelésében összehasonlítva a kapszulás endoszkópiával

    Get PDF
    A legutóbbi évekig csak a vékonybél kezdeti szakasza volt megközelíthetô a diagnosztikus vagy terápiás endoszkópos beavatkozások számára. Egy új, kettôs ballonos (DBE) endoszkópos eljárás, amely nagy felbontású képet szolgáltat, mindkettôre lehetôséget nyújt a gastrointestinalis traktus bármely területén. A tanulmány célja az volt, hogy beszámoljunk a Fujinon EN-T5 terápiás kettôs ballonos enteroszkóppal szerzett tapasztalatainkról, illetve összevessük az eredményeket a korábbi kapszulás endoszkópia eredményével, akinél ez rendelkezésre állt

    Do the impacts of alien invasive plants differ from expansive native ones? : an experimental study on arbuscular mycorrhizal fungi communities

    Get PDF
    No studies have compared so far the effects of alien invasive and expansive native (widespread, mono-dominant) plants on arbuscular mycorrhizal fungi (AMF). Four global or European most successful invaders (Impatiens glandulifera, Reynoutria japonica, Rudbeckia laciniata, Solidago gigantea) and two expansive plants native to Europe (Artemisia vulgaris, Phalaris arundinacea) were grown in pots to elucidate the magnitude and direction of changes in AMF abundance, species richness, and species composition in soils from under multispecies native vegetation. In a second stage, the effects of these changes on a native plant, Plantago lanceolata, were assessed. Plant species identity had larger impact on AMF abundance, species richness, and species composition as well as on P. lanceolata than origin of the species (alien vs. native). This could be due to the character of AMF relationships with the plants, i.e., their mycorrhizal status and dependency on AMF. However, the alterations induced by the plant species in soil chemical properties rather than in AMF community were the major drivers of differences in shoot mass and photosynthetic performance of P. lanceolata. We determined that the plants produced species-specific effects on soil properties that, in turn, resulted in species-specific soil feedbacks on the native plant. These effects were not consistent within groups of invaders or natives
    corecore