39 research outputs found

    Competing endogenous RNA network analysis of Turner syndrome patient-specific iPSC-derived cardiomyocytes reveals dysregulation of autosomal heart development genes by altered dosages of X-inactivation escaping non-coding RNAs

    No full text
    Abstract Background A 45,X monosomy (Turner syndrome, TS) is the only chromosome haploinsufficiency compatible with life. Nevertheless, the surviving TS patients still suffer from increased morbidity and mortality, with around one-third of them subjecting to heart abnormalities. How loss of one X chromosome drive these conditions remains largely unknown. Methods Here, we have generated cardiomyocytes (CMs) from wild-type and TS patient-specific induced pluripotent stem cells and profiled the mRNA, lncRNA and circRNA expression in these cells. Results We observed lower beating frequencies and higher mitochondrial DNA copies per nucleus in TS-CMs. Moreover, we have identified a global transcriptome dysregulation of both coding and non-coding RNAs in TS-CMs. The differentially expressed mRNAs were enriched of heart development genes. Further competing endogenous RNA network analysis revealed putative regulatory circuit of autosomal genes relevant with mitochondrial respiratory chain and heart development, such as COQ10A, RARB and WNT2, mediated by X-inactivation escaping lnc/circRNAs, such as lnc-KDM5C-4:1, hsa_circ_0090421 and hsa_circ_0090392. The aberrant expressions of these genes in TS-CMs were verified by qPCR. Further knockdown of lnc-KDM5C-4:1 in wild-type CMs exhibited significantly reduced beating frequencies. Conclusions Our study has revealed a genomewide ripple effect of X chromosome halpoinsufficiency at post-transcriptional level and provided insights into the molecular mechanisms underlying heart abnormalities in TS patients

    Electric Field Facilitating Hole Transfer in Non-Fullerene Organic Solar Cells with a Negative HOMO Offset

    No full text
    The record high photoinduced current and power conversion efficiencies of organic solar cells (OSCs) should be attributed to the significant contribution of non-fullerene electron acceptors via hole transfer to electron donors and/or a pronounced decrease in energy losses for exciton dissociation by aligned highest occupied molecular orbitals (HOMOs) or lowest unoccupied molecular orbitals (LUMOs). However, the hole transfer mechanism in those highly efficient non-fullerene OSCs with small HOMO offsets has not been extensively studied and fully understood, yet. Herein, we comparatively study the hole transfer kinetics in two OSCs with a positive (0.05 eV) and a negative (-0.07 eV) HOMO offset (Delta HOMO) based on polymer donor PTQ10 paired with non-fullerene acceptors ZITI-C or ZITI-N. Short-circuit current densities (J(sc)) of 20.42 and 12.81 mA cm(-2) are achieved in the OSCs based on PTQ10:ZITI-C (Delta HOMO = 0.05 eV) and PTQ10:ZITI-N (Delta HOMO = -0.07 eV) with an optimized donor (D):acceptor (A) ratio of 1:1, respectively, despite the small and even negative Delta HOMO. Results from time-resolved transient absorption spectroscopy show slower hole transfer (14.3 ps) in PTQ10:ZITI-N than that (3.7 ps) in PTQ10:ZITI-C. To understand the decent J(sc) value in the OSCs of PTQ10:ZITI-N, the temperature and electric field dependences of hole transfer are investigated in low-donor-content OSCs (D:A ratio of 1:9) in which photocurrent is dominated by the contribution via hole transfer from ZITI-N to PTQ10. Devices based on PTQ10:ZITI-C and PTQ10:ZITI-N show similar free charge generation behavior as a function of temperature, whereas the external quantum efficiencies of the PTQ10:ZITI-N device exhibit a much stronger bias dependence than that of PTQ10:ZITI-C, which suggests that the electric field facilitates exciton dissociation in PTQ10:ZITI-N where the energetic driving force alone cannot efficiently dissociate excitons.Funding Agencies|Swedish Government Strategic Research Area in Material Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU ) [200900971]; Swedish Research CouncilSwedish Research Council [2017-04123]; Knut and Alice Wallenberg FoundationKnut &amp; Alice Wallenberg Foundation [2016.0059]; China Scholarship Council (CSC)China Scholarship Council; National Key R&amp;D Program of China [2019YFA0705900, 2017YFA0204701]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China [21572234, 21661132006, 91833304]</p

    Attenuation of TGFBR2 expression and tumour progression in prostate cancer involve diverse hypoxia-regulated pathways

    No full text
    Abstract Background Dysregulation of transforming growth factor Ī² (TGF-Ī²) signaling and hypoxic microenvironment have respectively been reported to be involved in disease progression in malignancies of prostate. Emerging evidence indicates that downregulation of TGFBR2, a pivotal regulator of TGF-Ī² signaling, may contribute to carcinogenesis and progression of prostate cancer (PCa). However, the biological function and regulatory mechanism of TGFBR2 in PCa remain poorly understood. In this study, we propose to investigate the crosstalk of hypoxia and TGF-Ī² signaling and provide insight into the molecular mechanism underlying the regulatory pathways in PCa. Methods Prostate cancer cell lines were cultured in hypoxia or normoxia to evaluate the effect of hypoxia on TGFBR2 expression. Methylation specific polymerase chain reaction (MSP) and demethylation agents was used to evaluate the methylation regulation of TGFBR2 promoter. Besides, silencing of EZH2 via specific siRNAs or chemical inhibitor was used to validate the regulatory effect of EZH2 on TGFBR2. Moreover, we conducted PCR, western blot, and luciferase assays which studied the relationship of miR-93 and TGFBR2 in PCa cell lines and specimens. We also detected the impacts of hypoxia on EZH2 and miR-93, and further examined the tumorigenic functions of miR-93 on proliferation and epithelial-mesenchymal transition via a series of experiments. Results TGFBR2 expression was attenuated under hypoxia. Hypoxia-induced EZH2 promoted H3K27me3 which caused TGFBR2 promoter hypermethylation and contributed to its epigenetic silencing in PCa. Besides, miR-93 was significantly upregulated in PCa tissues and cell lines, and negatively correlated with the expression of TGFBR2. Ectopic expression of miR-93 promoted cell proliferation, migration and invasion in PCa, and its expression could also be induced by hypoxia. In addition, TGFBR2 was identified as a bona fide target of miR-93. Conclusions Our findings elucidate diverse hypoxia-regulated pathways including EZH2-mediated hypermethylation and miR-93-induced silencing contribute to attenuation of TGFBR2 expression and promote cancer progression in prostate cancer

    Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation

    No full text
    Manipulating charge generation in a broad spectral region has proved to be crucial for nonfullerene-electron-acceptor-based organic solar cells (OSCs). 16.64% high efficiency binary OSCs are achieved through the use of a novel electron acceptor AQx-2 with quinoxaline-containing fused core and PBDB-TF as donor. The significant increase in photovoltaic performance of AQx-2 based devices is obtained merely by a subtle tailoring in molecular structure of its analogue AQx-1. Combining the detailed morphology and transient absorption spectroscopy analyses, a good structure-morphology-property relationship is established. The stronger pi-pi interaction results in efficient electron hopping and balanced electron and hole mobilities attributed to good charge transport. Moreover, the reduced phase separation morphology of AQx-2-based bulk heterojunction blend boosts hole transfer and suppresses geminate recombination. Such success in molecule design and precise morphology optimization may lead to next-generation high-performance OSCs

    Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells

    No full text
    For state-of-the-art organic solar cells (OSCs) consisting of a large-bandgap polymer donor and a near-infrared (NIR) molecular acceptor, the control of the HOMO offset is the key to simultaneously achieve small energy loss (Eloss) and high photocurrent. However, the relationship between HOMO offsets and the efficiency for hole separation is quite elusive so far, which requires a comprehensive understanding on how small the driving force can effectively perform the charge separation while obtaining a high photovoltage to ensure high OSC performance. By designing a new family of ZITI-X NIR acceptors (XĀ =Ā S, C, N) with a high structural similarity and matching them with polymer donor J71 forming reduced HOMO offsets, we systematically investigated and established the relationship among the photovoltaic performance, energy loss, and hole-transfer kinetics. We achieved the highest PCEavgs of 14.05Ā Ā± 0.21% in a ternary system (J71:ZITI-C:ZITI-N) that best optimize the balance between driving force and energy loss

    Lusutrombopag as a Repurposing Drug in Combination with Aminoglycosides against Vancomycin-Resistant Enterococcus

    No full text
    Due to the widespread abuse of antibiotics, drug resistance in Enterococcus has been increasing. However, the speed of antibiotic discovery cannot keep pace with the acquisition of bacterial resistance. Thus, drug repurposing is a proposed strategy to solve the crises. Lusutrombopag (LP) has been approved as a thrombopoietin receptor agonist by the Food and Drug Administration. This study demonstrated that LP exhibited significant antimicrobial activities against vancomycin-resistant Enterococcus in vitro with rare resistance occurrence. Further, LP combined with tobramycin exhibited synergistic antimicrobial effects in vitro and in vivo against Enterococcus. No in vitro or in vivo detectable toxicity was observed when using LP. Mechanism studies indicated that the disrupted proton motive force may account for LPā€™s antimicrobial activity. In summary, these results demonstrate that LP has the previously undocumented potential to serve as an antibacterial agent against refractory infections caused by Enterococcus
    corecore