1,349 research outputs found

    Remarks on remnants by fermions' tunnelling from black strings

    Get PDF
    Hawking's calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions' tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.Comment: 16pages, Publised in Advances in High Energy Physics, Volume 2014, Article ID 62015

    Unveiling novel genes in fern genomes for the design of stress tolerant crops

    Get PDF
    Ferns are the second largest vascular plant lineage after angiosperms, shaping the plant biodiversity on our planet for more than 360 million years. Understanding the biological function of fern genes and their potential uses for agriculture, environment and health has been hampered by the lack of high-quality genome sequence of fern. The last five years have seen the assembly of reference fern genomes of Salvinia cucullata (0.26 ​Gb, n ​= ​9), Azolla filiculoides (0.75 ​Gb, n ​= ​22), Adiantum capillus-veneris (4.83 ​Gb, n ​= ​30), Alsophila spinulosa (6.27 ​Gb, n ​= ​69) and Ceratopteris richardii (7.46 ​Gb, n ​= ​39). These high-quality genome sequences will make significant contribution to the better understanding of evolution, ecology, functional genomics, and the diverse applications of ferns. Here, I review the physiological and some aspects of limited molecular mechanisms of abiotic (mainly heavy metal, drought, and shade) and biotic (pests and pathogens) tolerance in different fern species. The potential use of the fern genome toward crop abiotic and biotic stress tolerance is suggested. Thus, deciphering the genetic diversity and novel functional genes of ferns will provide tremendous boost to the knowledge advancement and the biotechnological applications of unique fern genes and proteins for sustainable agricultural production and environmental protection

    Does molecular and structural evolution shape the speedy grass stomata?

    Get PDF
    It has been increasingly important for breeding programs to be aimed at crops that are capable of coping with a changing climate, especially with regards to higher frequency and intensity of drought events. Grass stomatal complex has been proposed as an important factor that may enable grasses to adapt to water stress and variable climate conditions. There are many studies focusing on the stomatal morphology and development in the eudicot model plant Arabidopsis and monocot model plant Brachypodium. However, the comprehensive understanding of the distinction of stomatal structure and development between monocots and eudicots, especially between grasses and eudicots, are still less known at evolutionary and comparative genetic levels. Therefore, we employed the newly released version of the One Thousand Plant Transcriptome (OneKP) database and existing databases of green plant genome assemblies to explore the evolution of gene families that contributed to the formation of the unique structure and development of grass stomata. This review emphasizes the differential stomatal morphology, developmental mechanisms, and guard cell signaling in monocots and eudicots. We provide a summary of useful molecular evidences for the high water use efficiency of grass stomata that may offer new horizons for future success in breeding climate resilient crops

    Numerical modeling on the seismic responses of a large underground structure in soft ground

    Get PDF
    To estimate the earthquake damages of a large subway station built in soft ground, a soil-underground structure static and dynamic coupling interaction model is advanced with the strong nonlinear properties of soil modeled by a developed viscous-plastic constitutive model. The numerical modeling results show that the large underground structure in soft site has a large vertical relative deformation during the horizontal earthquake, which could be larger than its horizontal relative deformation. The dynamic deformation responses of the components near to the middle span of the underground structure are obviously larger those of the other components at the side spans, which means that these components near to the middle span are more apt to be damaged in horizontal earthquake. According to the horizontal relative deformation and the seismic damage process of the large underground structure, which limited elastic working state and the limited elastic-plastic working state are determined, and the maximal interlayer displacement angles are suggested to be 1/430 for the limited elastic working state and 1/185 for the limited elastic-plastic working state. In addition, the seismic soil pressure coefficients on the upper side wall have significant changes. To the large underground structure shown in this paper, the seismic soil pressure coefficients on the top half of the upper side wall should be defined alone in its seismic design

    Cr-doped La-Ni-O catalysts derived from\ua0perovskite precursors for CH4-CO2 reforming under microwave irradiation

    Get PDF
    The nickel catalysts derived from Cr-doped LaNiO perovskite-like precursors were characterized by X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, temperature-programmed reduction, and X-ray photoelectron spectroscopy. Their catalytic performance in CO reforming of methane under microwave irradiation was investigated. It was found that the structure and morphology of the oxide composites in this research were influenced by the ratio of Ni and Cr, and the mismatch of La, Ni, and Cr may cause phase segregation. The catalytic performance of the Ni catalysts is dependent on the oxygen mobility of the perovskite oxide matrix, the content of the reduced Ni, and the content of the remaining perovskite structure. The mobile oxygen in the perovskite matrix in the catalyst may enhance the conversion of CO during the reaction

    Editorial: Regulation and manipulation of nutrient-controlling genes in crops

    Get PDF
    Agriculture, food, and health sectors are largely disconnected because little has been done to consider the complex relationship between agricultural production, food consumption, human nutrition, health, and the food supply chain. As society develops, a healthy diet has becoming increasingly important for humans. Unhealthy diets and nutritional imbalance are highly correlated with several common chronic diseases, such as obesity, cardiovascular disease, and some cancers (Lee et al., 2011). The staples of a healthy diet usually come from crops, and the nutritional qualities of these crops, including the chemical composition of food crops, are essential considerations for a healthy diet. For example, the ratio between amylose and amylopectin in rice and the ratio between saturated and unsaturated fatty acids—particularly the percentage of oleic acid—are both related to human health (Goddard et al., 1984; Mozaffarian et al., 2006). Another major issue is the presence, or absence, of some nutritional components that are essential for human health, such as lysine in rice and tocopherol in the oils (Wang and Galili, 2016; Martin and Li, 2017). All of these require a better understanding of genetic regulation and the interaction between those genes encoding these traits (Martin and Li, 2017). This Research Topic focuses on the genetic control of important nutrients in crops, the identification of important QTLs combining large effective modern genetic tools such as GWAS analysis, multiple omics analysis on nutrients, gene-controlling nutrients function assays, and the manipulation of genes, such as gene transferring and genome editing. The aim of this Research Topic is to identify key genes and understand the genetic control of nutrients in order to provide healthy foods for humans. The Research Topic includes three original research articles, one systematic review, and one mini review on the subject of carbohydrate-containing and oil-bearing crops

    Four infinite families of ternary cyclic codes with a square-root-like lower bound

    Full text link
    Cyclic codes are an interesting type of linear codes and have wide applications in communication and storage systems due to their efficient encoding and decoding algorithms. Inspired by the recent work on binary cyclic codes published in IEEE Trans. Inf. Theory, vol. 68, no. 12, pp. 7842-7849, 2022, and the arXiv paper arXiv:2301.06446, the objectives of this paper are the construction and analyses of four infinite families of ternary cyclic codes with length n=3m−1n=3^m-1 for odd mm and dimension k∈{n/2,(n+2)/2}k \in \{n/2, (n + 2)/2\} whose minimum distances have a square-root-like lower bound. Their duals have parameters [n,k⊥,d⊥][n, k^\perp, d^\perp], where k⊥∈{n/2,(n−2)/2}k^\perp \in \{n/2, (n- 2)/2\} and d⊥d^\perp also has a square-root-like lower bound. These families of codes and their duals contain distance-optimal cyclic codes

    RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model

    Full text link
    Accurate detection and localization of X-corner on both planar and non-planar patterns is a core step in robotics and machine vision. However, previous works could not make a good balance between accuracy and robustness, which are both crucial criteria to evaluate the detectors performance. To address this problem, in this paper we present a novel detection algorithm which can maintain high sub-pixel precision on inputs under multiple interference, such as lens distortion, extreme poses and noise. The whole algorithm, adopting a coarse-to-fine strategy, contains a X-corner detection network and three post-processing techniques to distinguish the correct corner candidates, as well as a mixed sub-pixel refinement technique and an improved region growth strategy to recover the checkerboard pattern partially visible or occluded automatically. Evaluations on real and synthetic images indicate that the presented algorithm has the higher detection rate, sub-pixel accuracy and robustness than other commonly used methods. Finally, experiments of camera calibration and pose estimation verify it can also get smaller re-projection error in quantitative comparisons to the state-of-the-art.Comment: 15 pages, 8 figures and 4 tables. Unpublished further research and experiments of Checkerboard corner detection network CCDN (arXiv:2302.05097) and application exploration for robust camera calibration (https://ieeexplore.ieee.org/abstract/document/9428389
    • …
    corecore