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Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken
into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating
black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by
the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases
of the temperatures, which naturally leads to remnants left in the evaporation.

1. Introduction

Hawking radiation is a quantum tunnelling phenomenon
of particles across black holes’ horizons. To describe this
phenomenon, the semiclassical tunnelling method, which
relies on calculating the imaginary part of emission particle’s
action, was put forward [1]. Adopting the WKB approxima-
tion, one can get the relationship between the tunnelling rate
and the action of the classically forbidden trajectory of the
particle. Here we adopt the canonically invariant expression
[2–4]

Γ ∝ exp [−𝐼𝑚∮𝑝𝑑𝑟] . (1)

This canonically invariant relation was first derived in [5–7].
The null geodesic method and the Hamilton-Jacobi

method are usual methods employed to derive the imaginary
part [8–12]. In the null geodesic method [8], we should
first perform the Painleve coordinate transformation on
a metric and then use canonical momenta and Hamilton
canonical equations to get the imaginary part. When the
variable background spacetime is taken into account, the
corrected Hawking temperature is higher than the standard
one. Therefore, the variable background spacetime implies
the accelerated evaporation. The equation of motion of a

massive particle is different from that of themassless one.The
former obeys de Broglie wave function relation. Therefore,
the phase velocity of the particle was adopted to research the
tunnelling radiation of massive particles in the subsequent
investigations [13, 14]. The embryonic form of the Hamilton-
Jacobi method [11] was first found in [9, 10]. In this method,
the action satisfies the Hamilton-Jacobi equation. Taking
into account the property of the spacetime, one carries out
separation of variables on the action. Then, inserting the
separated variables into the Hamilton-Jacobi equation and
solving it, one gets the imaginary part. Extending this work
to the tunnelling radiation of fermions, the standardHawking
temperatures of the spherically symmetric and charged black
holes were recovered [15]. Other works about fermions’
tunnelling radiation are referred to in [16–24]. The standard
temperatures were also recovered by anomaly cancellations
[25–27].

Various theories of quantum gravity predict the existence
of a minimal observable length [28–32]. This length can be
implemented in the model of the generalized uncertainty
principle (GUP)

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 + 𝛽Δ𝑝

2
] , (2)
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where 𝛽 = 𝛽
0
(𝑙
2

𝑝
/ℏ
2
), 𝛽
0
is a dimensionless parameter, and 𝑙

𝑝

is the Planck length. The derivation of the GUP relies on the
modified fundamental commutation relations. Kempf et al.
first modified commutation relations [33] and got [𝑥

𝑖
, 𝑝
𝑗
] =

𝑖ℏ𝛿
𝑖𝑗
[1 + 𝛽𝑝

2
], where 𝑥

𝑖
and 𝑝

𝑖
are operators of position and

momentum defined by

𝑥
𝑖
= 𝑥
0𝑖
, 𝑝

𝑖
= 𝑝
0𝑖
(1 + 𝛽𝑝

2
) , (3)

and 𝑥
0𝑖
and 𝑝

0𝑖
satisfy the canonical commutation relations

[𝑥
0𝑖
, 𝑝
0𝑗
] = 𝑖ℏ𝛿

𝑖𝑗
.

This modification plays an important role in quantum
gravity. With considerations of modifications, the cosmolog-
ical constant problem was discussed and the finiteness of
the constant was derived in [34]. Using a new form of GUP,
the Unruh effect has been analyzed in [35]. The quantum
dynamics of the Friedmann-Robertson-Walker universe was
gotten in [36]. The related predictions on postinflation
preheating in the cosmology were derived in [37]. Using the
modifications, the thermodynamics of the black holes were
researched in [38–40] and the tunnelling radiation of scalar
particles was investigated in [41]. In recent work [42], taking
into account effects of quantum gravity, the authors modified
the Dirac equation in curved spacetime and investigated
fermions’ tunnelling from the Schwarzschild black hole.They
derived that the quantum correction slows down the increase
of the Hawking temperature, which leads to the remnant.

In this paper, we extend this work to anti-de Sitter space-
time and investigate the tunnelling radiation of fermions
from black strings, where effects of quantum gravity are
taken into account. Black strings are cylindrically symmetric
solutions of the Einstein-Maxwell equations with a negative
cosmological constant.The solutions are asymptotically anti-
de Sitter in transverse direction and along the axis. There
are three Killing vectors, 𝜕

𝑡
, 𝜕
𝜃
, and 𝜕

𝑧
, as the minimal

symmetry. The AdS/CFT correspondence is an important
topic in modern physics. Researches of anti-de Sitter space-
time are helpful to understand this correspondence. To
incorporate effects of quantum gravity, we first modify the
Dirac equation in curved spacetime by operators of position
andmomentumdefined in [33] and then adopt theHamilton-
Jacobi method to get the imaginary parts of the action. The
corrected Hawking temperatures are not only determined
by the mass, charge, and angular momentum of the strings,
but also affected by the quantum numbers (charge, angular
momentum, mass, and energy) of the emitted fermions.
Quantum gravity corrections slow down the increases of the
Hawking temperatures. It is natural to lead to the remnants
left in the evaporation.

The rest is organized as follows. In the next section, using
operators of position and momentum defined in [33], we
modify the Dirac equation in curved spacetime. In Section 3,
we investigate the tunnelling radiation of charged fermions
from the charged black string. The remnant is observed in
the evaporation. In Section 4, the radiation of uncharged
fermions in the rotating black string is discussed. Section 5
is devoted to our conclusion.

2. Generalized Dirac Equation

Here we adopt the modified fundamental commutation
relation put forward in [33] to modify the Dirac equation
in curved spacetime. Using (3), the square of momentum
operators is gotten as

𝑝
2
= 𝑝
𝑖
𝑝
𝑖
= −ℏ
2
[1 − 𝛽ℏ

2
(𝜕
𝑗
𝜕
𝑗
)] 𝜕
𝑖
⋅ [1 − 𝛽ℏ

2
(𝜕
𝑗
𝜕
𝑗
)] 𝜕
𝑖

≃ −ℏ
2
[𝜕
𝑖
𝜕
𝑖
− 2𝛽ℏ

2
(𝜕
𝑗
𝜕
𝑗
) (𝜕
𝑖
𝜕
𝑖
)] .

(4)

The higher order terms of 𝛽 are neglected in the last step. In
the theory of quantum gravity, the generalized frequency is
found as [43]

�̃� = 𝐸 (1 − 𝛽𝐸
2
) , (5)

where 𝐸 is the energy operator and is defined as 𝐸 = 𝑖ℏ𝜕
𝑡
.

From the energy mass shell condition 𝑝2 + 𝑚2 = 𝐸
2, the

generalized expression of the energy was derived [41, 43–45].
It is

𝐸 = 𝐸 [1 − 𝛽 (𝑝
2
+ 𝑚
2
)] . (6)

The generalized Dirac equation without considerations of
electromagnetic effects in the flat spacetime has been derived
in [44] by the consequence of the GUP. In curved spacetime,
the Dirac equation with an electromagnetic field takes on the
form

𝑖𝛾
𝜇
(𝜕
𝜇
+ Ω
𝜇
+
𝑖

ℏ
𝑒𝐴
𝜇
)Ψ +

𝑚

ℏ
Ψ = 0, (7)

whereΩ
𝜇
≡ (𝑖/2)𝜔

𝜇

𝑎𝑏
Σ
𝑎𝑏
,𝜔
𝜇

𝑎𝑏 is the spin connection defined
by the tetrad 𝑒𝜆

𝑏
and ordinary connection

𝜔
𝜇

𝑎

𝑏
= 𝑒]
𝑎
𝑒
𝜆

𝑏
Γ
]
𝜇𝜆
− 𝑒
𝜆

𝑏
𝜕
𝜇
𝑒
𝜆

𝑎
. (8)

TheLatin indices live in the flatmetric 𝜂
𝑎𝑏
whileGreek indices

are raised and lowered by the curved metric 𝑔
𝜇]. The tetrad

can be constructed from

𝑔
𝜇] = 𝑒𝜇

𝑎
𝑒]
𝑏
𝜂
𝑎𝑏
, 𝜂
𝑎𝑏
= 𝑔
𝜇]𝑒
𝜇

𝑎
𝑒
]
𝑏
,

𝑒
𝜇

𝑎
𝑒]
𝑎
= 𝛿
𝜇

] , 𝑒
𝜇

𝑎
𝑒
𝜇

𝑏
= 𝛿
𝑏

𝑎
.

(9)

In (7), Σ
𝑎𝑏
is the Lorentz spinor generators defined by

Σ
𝑎𝑏
=
𝑖

4
[𝛾
𝑎
, 𝛾
𝑏
] , {𝛾

𝑎
, 𝛾
𝑏
} = 2𝜂

𝑎𝑏
. (10)

Then one can construct 𝛾𝜇’s in the curved spacetime as

𝛾
𝜇
= 𝑒
𝜇

𝑎
𝛾
𝑎
, {𝛾

𝜇
, 𝛾

]
} = 2𝑔

𝜇]
. (11)

To get the generalized Dirac equation in the curved space-
time, we rewrite (7) as

−𝑖𝛾
0
𝜕
0
Ψ = (𝑖𝛾

𝑖
𝜕
𝑖
+ 𝑖𝛾
𝜇
Ω
𝜇
+ 𝑖𝛾
𝜇 𝑖

ℏ
𝑒𝐴
𝜇
+
𝑚

ℏ
)Ψ. (12)
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Using (4), (6), and (12) and neglecting the higher order terms
of 𝛽, we get [41, 43–45]

−𝑖𝛾
0
𝜕
0
Ψ = (𝑖𝛾

𝑖
𝜕
𝑖
+ 𝑖𝛾
𝜇
Ω
𝜇
+ 𝑖𝛾
𝜇 𝑖

ℏ
𝑒𝐴
𝜇
+
𝑚

ℏ
)

× (1 + 𝛽ℏ
2
𝜕
𝑗
𝜕
𝑗
− 𝛽𝑚
2
)Ψ,

(13)

which is rewritten as

[𝑖𝛾
0
𝜕
0
+ 𝑖𝛾
𝑖
𝜕
𝑖
(1 − 𝛽𝑚

2
) + 𝑖𝛾

𝑖
𝛽ℏ
2
(𝜕
𝑗
𝜕
𝑗
) 𝜕
𝑖

+
𝑚

ℏ
(1 + 𝛽ℏ

2
𝜕
𝑗
𝜕
𝑗
− 𝛽𝑚
2
)

+ 𝑖𝛾
𝜇 𝑖

ℏ
𝑒𝐴
𝜇
(1 + 𝛽ℏ

2
𝜕
𝑗
𝜕
𝑗
− 𝛽𝑚
2
)

+ 𝑖𝛾
𝜇
Ω
𝜇
(1 + 𝛽ℏ

2
𝜕
𝑗
𝜕
𝑗
− 𝛽𝑚
2
) ]Ψ = 0.

(14)

Thus the generalized Dirac equation is derived. When 𝐴
𝜇
=

0, it describes an equation without electromagnetic fields. In
the following sections, we adopt (14) to describe fermions
tunnelling from the charged and rotating black strings.

3. Fermions’ Tunnelling from a
Charged Black String

The 4-dimensional neutral black string solutions to Einstein-
Maxwell equations with a negative cosmological constant
were derived in [46]. Subsequently, the general solutions
with electric charges were gotten [47]. In this section, we
investigate charged fermions’ tunnelling from a cylindrically
symmetric black string. The black string solution is given by
[47]

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+

1

𝑔 (𝑟)
𝑑𝑟
2
+ 𝑟
2
𝑑𝜃
2
+ 𝛼
2
𝑟
2
𝑑𝑧
2
, (15)

with the electromagnetic potential

𝐴
𝜇
= (𝐴
𝑡
, 0, 0, 0) = (

2𝑄

𝛼𝑟
, 0, 0, 0) , (16)

where 𝑓(𝑟) = 𝑔(𝑟) = 𝛼
2
𝑟
2
− (4𝑀/𝛼𝑟) + (4𝑄

2
/𝛼
2
𝑟
2
), 0 ≤

𝜃 ≤ 2𝜋, 𝛼2 = −Λ/3, and Λ is the negative cosmology
constant. 𝑀 and 𝑄 are the ADM mass and charge per unit
length in the z direction, respectively. The above spacetime is
asymptotically anti-de Sitter in the transverse directions and
string directions. The singularity at 𝑟 = 0 is enclosed by the
horizon 𝑟

+
if the condition 𝑄2 ≤ (3/4)𝑀4/3 holds. The event

horizon 𝑟
+
is located at

𝑟
+
=
1

2
[√2𝑅 + (−2𝑅 +

8𝑀

𝛼3√2𝑅

)] , (17)

where

𝑅 = [

[

𝑀
2

𝛼6
+ ((

𝑀
2

𝛼6
)

2

− (
4𝑄
2

3𝛼4
)

3

)

1/2

]

]

1/3

+ [

[

𝑀
2

𝛼6
− ((

𝑀
2

𝛼6
)

2

− (
4𝑄
2

3𝛼4
)

3

)

1/2

]

]

1/3

.

(18)

Themetric (15) describes a neutral black string solution when
𝑄 = 0.

For a spin-1/2 fermion, there are two states corresponding
to spin-up and spin-down. Here we only investigate the state
with spin-up. The investigation of the state with spin-down
is parallel and the same result can be obtained. To describe
the motion of a charge fermion, we suppose that the wave
function takes on the form

Ψ = (

𝐴

0

𝐵

0

) exp( 𝑖
ℏ
𝐼 (𝑡, 𝑟, 𝜃, 𝑧)) , (19)

where𝐴 and𝐵 are functions of 𝑡, 𝑟, 𝜃, and 𝑧 and 𝐼 is the action
of the fermion with spin-up state. To find gamma matrices,
we should first construct a tetrad. It is straightforward to
construct a tetrad from the metric (15). The tetrad is

𝑒
𝜇

𝑎
= diag (√𝑓, 1/√𝑔, 𝑟, 𝛼𝑟) . (20)

Then gamma matrices are gotten as

𝛾
𝑡
=

1

√𝑓 (𝑟)

(
𝑖 0

0 −𝑖
) , 𝛾

𝜃
= √𝑔𝜃𝜃 (

0 𝜎
1

𝜎
1
0
) ,

𝛾
𝑟
= √𝑔 (𝑟) (

0 𝜎
3

𝜎
3
0
) , 𝛾

𝑧
= √𝑔𝑧𝑧 (

0 𝜎
2

𝜎
2
0
) .

(21)

In the above equations, √𝑔𝜃𝜃 = 1/𝑟 and √𝑔𝑧𝑧 = 1/𝛼𝑟. To
apply the WKB approximation, we insert the wave function
and the gamma matrices into the generalized Dirac equation
and then divide by the exponential term and multiply by ℏ.
The resulting equation of leading order in ℏ is derived and
decoupled into four equations

− 𝑖𝐴
1

√𝑓
𝜕
𝑡
𝐼 − 𝐵 (1 − 𝛽𝑚

2
)√𝑔𝜕𝑟𝐼

− 𝐴𝑚𝛽 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐵𝛽√𝑔𝜕𝑟𝐼 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐴𝑚(1 − 𝛽𝑚
2
) − 𝑖𝐴

𝑒𝐴
𝑡

√𝑓

× [1 − 𝛽𝑚
2
− (𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

)]

= 0,
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𝑖𝐵
1

√𝑓
𝜕
𝑡
𝐼 − 𝐴 (1 − 𝛽𝑚

2
)√𝑔𝜕𝑟𝐼

− 𝐵𝑚𝛽 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐴𝛽√𝑔𝜕𝑟𝐼 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐵𝑚 (1 − 𝛽𝑚
2
) + 𝑖𝐵

𝑒𝐴
𝑡

√𝑓

× [1 − 𝛽𝑚
2
− (𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

)]

= 0,

(22)

𝐴{− (1 − 𝛽𝑚
2
)√𝑔𝜃𝜃𝜕

𝜃
𝐼 + 𝛽√𝑔𝜃𝜃𝜕

𝜃
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

− 𝑖 (1 − 𝛽𝑚
2
)√𝑔𝑧𝑧𝜕

𝑧
𝐼 + 𝑖𝛽√𝑔𝑧𝑧𝜕

𝑧
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

] } = 0,

𝐵 {− (1 − 𝛽𝑚
2
)√𝑔𝜃𝜃𝜕

𝜃
𝐼 + 𝛽√𝑔𝜃𝜃𝜕

𝜃
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

− 𝑖 (1 − 𝛽𝑚
2
)√𝑔𝑧𝑧𝜕

𝑧
𝐼 + 𝑖𝛽√𝑔𝑧𝑧𝜕

𝑧
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜃𝜃
(𝜕
𝜃
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

] } = 0.

(23)

Obviously, it is difficult to get the solution of the action 𝐼 from
the above equations. However, the action can be separated
by the property of the black string. Considering the Killing
vectors of the spacetime, the author separated the action as
𝐼 = −𝜔𝑡 + 𝑊(𝑟) + 𝑙𝜃 + 𝐽𝑧 [17], where 𝜔 is the energy of the
emitted fermion. From the above four equations, we carry out
separation of variables as

𝐼 = −𝜔𝑡 +𝑊 (𝑟) + Θ (𝜃, 𝑧) . (24)

We first observe (23) and find that they are irrelevant to𝐴 and
𝐵 and can be reduced to the same equation. Inserting (24) into
(23) yields

(√𝑔𝜃𝜃𝜕
𝜃
Θ + 𝑖√𝑔𝑧𝑧𝜕

𝑧
Θ)

× [1 − 𝛽𝑚
2
− 𝛽𝑔
𝑟𝑟
(𝜕
𝑟
𝑊)
2

− 𝛽𝑔
𝜃𝜃
(𝜕
𝜃
Θ)
2

− 𝛽𝑔
𝑧𝑧
(𝜕
𝑧
Θ)
2

]

= 0.

(25)

In the above equation, the summation of factors in the square
brackets cannot be zero. Therefore, it should be

√𝑔𝜃𝜃𝜕
𝜃
Θ + 𝑖√𝑔𝑧𝑧𝜕

𝑧
Θ = 0, (26)

which yields a complex function solution (other than the
trivial constant solution) of Θ. However, this solution has
no contribution to the tunnelling rate. Therefore, we will not
consider its contribution in the calculation. Another impor-
tant relation predicted by (26) is 𝑔𝜃𝜃(𝜕

𝜃
Θ)
2
+ 𝑔
𝑧𝑧
(𝜕
𝑧
Θ)
2
=

0. Now we focus our attention on the first two equations.
Inserting (24) into (22) and canceling 𝐴 and 𝐵 yield

𝐴
6
(𝜕
𝑟
𝑊)
6

+ 𝐴
4
(𝜕
𝑟
𝑊)
4

+ 𝐴
2
(𝜕
𝑟
𝑊)
2

+ 𝐴
0
= 0, (27)

where

𝐴
6
= 𝛽
2
𝑔
3
𝑓,

𝐴
4
= 𝛽𝑔
2
𝑓 (𝑚
2
𝛽 − 2) − 𝛽

2
𝑔
2
𝑒
2
𝐴
2

𝑡
,

𝐴
2
= 𝑔𝑓 (1 − 𝛽𝑚

2
) (1 + 𝛽𝑚

2
)

− 2𝛽𝑔𝑒𝐴
𝑡
[𝜔 − 𝑒𝐴

𝑡
(1 − 𝛽𝑚

2
)] ,

𝐴
0
= −𝑚

2
𝑓(1 − 𝛽𝑚

2
)
2

− [𝜔 − 𝑒𝐴
𝑡
(1 − 𝛽𝑚

2
)]
2

.

(28)

Neglect the higher order terms of 𝛽 and solve (27) at the event
horizon. Thus the imaginary part of the radial action is

𝐼𝑚𝑊
±
= ±∫

𝑑𝑟

√𝑔𝑓

√[𝜔 − 𝑒𝐴
𝑡
(1 − 𝛽𝑚2)]

2

+ 𝑚2𝑓

× (1 + 𝛽𝑚
2
+ 𝛽
�̃�
2

0
− 𝑒𝐴
𝑡
�̃�
0

𝑓
)

= ±𝜋
𝜔 − 𝑒𝐴

𝑡+

𝑓
(1 + 𝛽𝜉) ,

(29)

where +(−) denote the outgoing (ingoing) solutions, 𝑓 =
2𝛼
2
𝑟
+
+ (4𝑀/𝛼𝑟

2

+
) − (8𝑄

2
/𝛼
2
𝑟
3

+
), 𝜉 = (3/2)𝑚

2
+ ((2𝑚

2
+

1)/2𝜔
0
) + (2𝑒𝐴

𝑡+
/𝑓

𝑟
+
) − (2/3)(𝜔

0
/𝑓

𝑟
+
), �̃�
0
= 𝜔 − 𝑒𝐴

𝑡
,

𝜔
0
= 𝜔 − 𝑒𝐴

𝑡+
, and 𝐴

𝑡+
= 2𝑄/𝛼𝑟

+
is the electromagnetic

potential at the event horizon. Using the relation of the roots
of 𝑓 = 0, it is easily proved that 𝜉 > 0. The tunnelling rate of
the charged fermion at the event horizon is

Γ ∝ exp [−𝐼𝑚∮𝑝
𝑟
𝑑𝑟]

= exp [−𝐼𝑚(∫𝑝out
𝑟
𝑑𝑟 − ∫𝑝

in
𝑟
𝑑𝑟)]

= exp [∓2𝐼𝑚∫𝑝out,in
𝑟

𝑑𝑟] .

(30)

Here, 𝑝
𝑟
= 𝜕
𝑟
𝑊, and out(in) correspond to +(−). Thus the

tunnelling rate is gotten as

Γ ∝ exp [−2𝜋
𝜔 − 𝑒𝐴

𝑡+

𝑓
(1 + 𝛽𝜉)] . (31)

However, the temporal contribution to the tunneling ampli-
tude was missed in the above calculation [2, 5–7]. We use
Kruskal coordinates (𝑇, 𝑅) to find this temporal contribution.
The region exterior is described by

𝑇 = 𝑒
𝜅𝑟
∗ sinh (𝜅𝑡) , 𝑅 = 𝑒

𝜅𝑟
∗ cosh (𝜅𝑡) , (32)
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where 𝑟
∗
= 𝑟+(1/2𝜅) ln((𝑟−𝑟

+
)/𝑟
+
) is the tortoise coordinate

and 𝜅 is the surface gravity. The interior region is given by

𝑇 = 𝑒
𝜅𝑟
∗ cosh (𝜅𝑡) , 𝑅 = 𝑒

𝜅𝑟
∗ sinh (𝜅𝑡) . (33)

To find the temporal contribution, we connect these two
patches across the horizon. Rotate the time 𝑡 as 𝑡 → 𝑡 −

(𝜋/2)𝑖𝜅. As pointed out in [2–4], this rotation would lead
to an additional imaginary contribution coming from the
temporal part, namely, 𝐼𝑚[(𝜔 − 𝑒𝐴

𝑡+
)Δ𝑡

out,in
] = (1/2)𝜋(𝜔 −

𝑒𝐴
𝑡+
)𝜅. So the total temporal contribution is 𝐼𝑚[(𝜔 −

𝑒𝐴
𝑡+
)Δ𝑡] = 𝜋(𝜔 − 𝑒𝐴

𝑡+
)𝜅. Therefore, the tunnelling rate with

the consideration of the temporal contribution is

Γ ∝ exp [−1
ℏ
(𝐼𝑚 ((𝜔 − 𝑒𝐴

𝑡+
) Δ𝑡) + 𝐼𝑚∮𝑝

𝑟
𝑑𝑟)]

= exp [−4𝜋
𝜔 − 𝑒𝐴

𝑡+

𝑓
(1 +

1

2
𝛽𝜉)] .

(34)

This is the Boltzmann factor with the Hawking temperature
at the event horizon taking

𝑇 =
𝑓


4𝜋 (1 + 𝛽𝜉)
= 𝑇
0
(1 −

1

2
𝛽𝜉) , (35)

where 𝑇
0
= (1/2𝜋)(𝛼

2
𝑟
+
+ (2𝑀/𝛼𝑟

2

+
) − (4𝑄

2
/𝛼
2
𝑟
3

+
)) is the

standard Hawking temperature of the black string.
It is shown that the corrected temperature appears and

is lower than the standard one. The correction is not only
determined by the mass and charge of the black string, but
also affected by the quantum number (mass, charge, and
energy) of the emitted fermion. Quantum gravity correction
slows down the increase of the Hawking temperature caused
by the evaporation. Finally, the black string is in a balance
state. At this state, the evaporation stops and the remnant is
produced.

It is of interest to discuss the corrected area entropy. The
entropy can be derived by the first law of thermodynamics
with the corrected temperature (35). However, the expression
is complicated, so we do not write it here. The corrected
temperatures were also gotten in [48–53]. When 𝛽 = 0, the
standard Hawking temperature is recovered [17, 47].

4. Fermions’ Tunnelling from a
Rotating Black String

In this section, we investigate uncharged fermions’ tunnelling
from the event horizon of a rotating black string. Therefore,
effects of the electromagnetic field in the generalized Dirac
equation are not taken into account here. The rotating black
string solution in a spacetime asymptotically anti-de Sitter in

the radial direction was derived by Lemos and Zanchin [54].
The solution is

𝑑𝑠
2
= −(𝛼

2
𝑟
2
−

4𝑀(1 − 𝑎
2
𝛼
2
/2)

𝛼𝑟
)𝑑𝑡
2

+ (𝛼
2
𝑟
2
−

4𝑀(1 − (3/2) 𝑎
2
𝛼
2
)

𝛼r
)

−1

𝑑𝑟
2

−
8𝑀𝑎√1 − 𝑎2𝛼2/2

𝛼𝑟
𝑑𝑡 𝑑𝜑

+ (𝑟
2
−
4𝑀𝑎
2

𝛼𝑟
)𝑑𝜑
2
+ 𝛼
2
𝑟
2
𝑑𝑧
2
,

(36)

where 𝛼2 = −Λ/3, Λ is the negative cosmological constant,
and 𝑎 is the angular momentum per unit mass. It is defined
that 𝑎2𝛼2 = 1−𝜖/𝑀 and 𝜖 = √𝑀2 − 8𝐽2𝛼2/9.𝑀 and 𝐽 are the
mass and angular momentum line densities of the spacetime,
respectively. The relation between 𝐽 and 𝑎 is given by 𝐽 =
(3/2)𝑀𝑎√1 − 𝑎2𝛼2/2. For convenience of the investigation,
the metric (36) is rewritten as

𝑑𝑠
2
= −Δ(𝛾𝑑𝑡 −

𝛿

𝛼2
𝑑𝜑)

2

+ 𝑟
2
(𝛾𝑑𝜑 − 𝛿𝑑𝑡)

2

+
𝑑𝑟
2

Δ
+ 𝛼
2
𝑟
2
𝑑𝑧
2
,

(37)

where

Δ = 𝛼
2
𝑟
2
−
𝑏

𝛼𝑟
, 𝑏 = 4𝑀(1 −

3𝑎
2
𝛼
2

2
) ,

𝛾 = √
2 − 𝑎
2
𝛼
2

2 − 3𝑎2𝛼2
, 𝛿 =

𝑎𝛼
2

√1 − (3/2) 𝑎
2𝛼2
.

(38)

The event horizon is located at 𝑟
+
= 𝛼
−1
𝑏
1/3 which is given

for Δ = 0. To describe the fermion’s tunnelling from the
event horizon, one can directly construct a tetrad and gamma
matrices from the metric (37). For simplicity, to construct
the tetrad and gamma matrices, we perform the dragging
coordinate transformation

𝜑 = 𝜙 + Ω𝑡, Ω =
−Δ𝛾𝛿𝛼

2
+ 𝑟
2
𝛾𝛿𝛼
4

−Δ𝛿2 + 𝑟2𝛾2𝛼4
, (39)

on the metric (37) and get

𝑑𝑠
2
= −𝐹 (𝑟) 𝑑𝑡

2
+

1

𝐺 (𝑟)
𝑑𝑟
2
+ 𝑔
𝜙𝜙
𝑑𝜙
2
+ 𝑔
𝑧𝑧
𝑑𝑧
2

= −

Δ𝑟
2
(𝛼
2
𝛾
2
− 𝛿
2
)
2

−Δ𝛿2 + 𝛼4𝑟2𝛾2
𝑑𝑡
2
+
1

Δ
𝑑𝑟
2

+ (−
Δ𝛿
4

𝛼4
+ 𝑟
2
𝛾
2
)𝑑𝜙
2
+ 𝛼
2
𝑟
2
𝑑𝑧
2
.

(40)
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Here we still only investigate the state with spin-up. Assume
that the wave function of the fermion with spin-up state
shares the same expression as (19), namely,

Ψ = (

𝐴

0

𝐵

0

) exp( 𝑖
ℏ
𝐼 (𝑡, 𝑟, 𝜙, 𝑧)) . (41)

The tetrad is easily constructed as

𝑒
𝜇

𝑎
= diag (√𝐹, 1/√𝐺,√𝑔𝜙𝜙, √𝑔𝑧𝑧) . (42)

Now gamma matrices take on the form

𝛾
𝑡
=

1

√𝐹 (𝑟)

(
𝑖 0

0 −𝑖
) , 𝛾

𝜙
= √𝑔𝜙𝜙 (

0 𝜎
1

𝜎
1
0
) ,

𝛾
𝑟
= √𝐺 (𝑟) (

0 𝜎
3

𝜎
3
0
) , 𝛾

𝑧
= √𝑔𝑧𝑧 (

0 𝜎
2

𝜎
2
0
) .

(43)

In the above equations, 𝑔𝜙𝜙 = 𝛼4/(−Δ𝛿4 + 𝛼4𝑟2𝛾2), 𝑔𝑧𝑧 =
1/𝛼
2
𝑟
2. Inserting the wave function and the gamma matrices

into the generalized Dirac equation and adopting the same
process as the above section, we get

− 𝑖𝐴
1

√𝐹

𝜕
𝑡
𝐼 − 𝐵 (1 − 𝛽𝑚

2
)√𝐺𝜕

𝑟
𝐼

− 𝐴𝑚𝛽 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐵𝛽√𝐺𝜕
𝑟
𝐼 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐴𝑚(1 − 𝛽𝑚
2
) = 0,

𝑖𝐵
1

√𝐹

𝜕
𝑡
𝐼 − 𝐴 (1 − 𝛽𝑚

2
)√𝐺𝜕

𝑟
𝐼

− 𝐵𝑚𝛽 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐴𝛽√𝐺𝜕
𝑟
𝐼 [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

+ 𝐵𝑚 (1 − 𝛽𝑚
2
) = 0,

(44)

𝐴{− (1 − 𝛽𝑚
2
)√𝑔𝜙𝜙𝜕

𝜙
𝐼 + 𝛽√𝑔𝜙𝜙𝜕

𝜙
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

− 𝑖 (1 − 𝛽𝑚
2
)√𝑔𝑧𝑧𝜕

𝑧
𝐼 + 𝑖𝛽√𝑔𝑧𝑧𝜕

𝑧
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

] } = 0,

𝐵 {− (1 − 𝛽𝑚
2
)√𝑔𝜙𝜙𝜕

𝜙
𝐼 + 𝛽√𝑔𝜙𝜙𝜕

𝜙
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

]

− 𝑖 (1 − 𝛽𝑚
2
)√𝑔𝑧𝑧𝜕

𝑧
𝐼 + 𝑖𝛽√𝑔𝑧𝑧𝜕

𝑧
𝐼

× [𝑔
𝑟𝑟
(𝜕
𝑟
𝐼)
2

+ 𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

] + 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

} = 0.

(45)

It is also difficult to solve the action 𝐼 from the above
equations. We first observe the last two equations. They can
be reduced into the same equation and yield √𝑔𝜙𝜙𝜕

𝜙
𝐼 +

𝑖√𝑔𝑧𝑧𝜕
𝑧
𝐼 = 0. This implies

𝑔
𝜙𝜙
(𝜕
𝜙
𝐼)
2

+ 𝑔
𝑧𝑧
(𝜕
𝑧
𝐼)
2

= 0. (46)

Now our interest is the first two equations which determine
the Hawking temperature of the black string. Considering
the properties of the metrics (36) and (40), we carry out
separation of variables as

𝐼 = − (𝜔 − 𝑗Ω) 𝑡 + 𝑊 (𝑟, 𝑧) + 𝑗𝜙, (47)

where 𝜔 and 𝑗 are the energy and angular momentum of the
emitted fermion, respectively. Inserting (47) into (44) and
canceling 𝐴 and 𝐵 yield

𝐵
6
(𝜕
𝑟
𝑊)
6

+ 𝐵
4
(𝜕
𝑟
𝑊)
4

+ 𝐵
2
(𝜕
𝑟
𝑊)
2

+ 𝐵
0
= 0, (48)

where

𝐵
6
= 𝛽
2
𝐺
3
𝐹,

𝐵
4
= 𝛽𝐺
2
𝐹 (𝑚
2
𝛽 − 2) ,

𝐵
2
= 𝐺𝐹 [(1 − 𝛽𝑚

2
)
2

+ 2𝛽𝑚
2
(1 − 𝑚

2
𝛽)] ,

𝐵
0
= −𝑚

2
(1 − 𝛽𝑚

2
)
2

𝐹 − (𝜔 − 𝑗Ω)
2

.

(49)

Neglecting the higher order terms of 𝛽 and solving (48) at the
event horizon, we get the solution of𝑊. Thus the imaginary
part of𝑊 is

𝐼𝑚𝑊
±
= ±∫𝑑𝑟

√
𝑚
2
𝐹 + (𝜔 − 𝑗Ω)

2

𝐺𝐹

× (1 + 𝛽𝑚
2
+ 𝛽
(𝜔 − 𝑗Ω)

2

𝐹
)

= ±𝜋
(𝜔 − 𝑗Ω

+
) 𝛼
4
𝑟
2

+
𝛾

(2𝛼4𝑟3
+
+ 𝑏) (𝛼2𝛾2 − 𝛿2)

(1 + 𝛽𝜒) ,

(50)

where +(−) are the outgoing (ingoing) solutions, 𝜒 =

(3/2)𝑚
2
+ 3𝑗(𝜔 − 𝑗Ω

+
)𝛿/(𝛼
2
𝛾
2
− 𝛿
2
)𝛾𝑟
2

+
− (3/2)

((𝜔 − 𝑗Ω
+
)
2
𝛿
2
/(𝛼
2
𝛾
2
− 𝛿
2
)𝑟
2

+
), and Ω

+
= 𝛿/𝛾 is the ang-

ular velocity at the event horizon. It is not difficult to prove
that 𝜒 > 0.
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To find the temporal contribution, we use the Kruskal
coordinates (𝑇, 𝑅). The region exterior to the string (𝑟 > 𝑟

+
)

is described by

𝑇 = 𝑒
𝜅
+
𝑟
∗ sinh (𝜅

+
𝑡) , 𝑅 = 𝑒

𝜅
+
𝑟
∗ cosh (𝜅

+
𝑡) , (51)

where 𝑟
∗
= 𝑟 + (1/2𝜅

+
) ln((𝑟 − 𝑟

+
)/𝑟
+
) and 𝜅

+
denote the

surface gravity. The interior region is

𝑇 = 𝑒
𝜅
+
𝑟
∗ cosh (𝜅

+
𝑡) , 𝑅 = 𝑒

𝜅
+
𝑟
∗ sinh (𝜅

+
𝑡) . (52)

Adopting the same process as the above section, we get that
the total temporal contribution is 𝐼𝑚[(𝜔 − 𝑗Ω

+
)Δ𝑡] = 𝜋(𝜔 −

𝑗Ω
+
)𝜅
+
. Therefore, the tunnelling rate is

Γ ∝ exp [−1
ℏ
(𝐼𝑚 ((𝜔 − 𝑗Ω

+
) Δ𝑡) + 𝐼𝑚∮𝑝

𝑟
𝑑𝑟)]

= exp[−
4𝜋 (𝜔 − 𝑗Ω

+
) 𝛼
4
𝑟
2

+
𝛾

(2𝛼4𝑟3
+
+ 𝑏) (𝛼2𝛾2 − 𝛿2)

(1 +
1

2
𝛽𝜒)] .

(53)

Equation (53) is the Boltzmann factor of the Hawking
temperature at the event horizon taking

𝑇 =

(2𝛼
4
𝑟
3

+
+ 𝑏) (𝛼

2
𝛾
2
− 𝛿
2
)

4𝜋𝛼4𝑟2
+
𝛾 (1 + (1/2) 𝛽𝜒)

= 𝑇
0
(1 −

1

2
𝛽𝜒) , (54)

where 𝑇
0
= (2𝛼

4
𝑟
3

+
+ 𝑏)(𝛼

2
𝛾
2
− 𝛿
2
)/4𝜋𝛼

4
𝑟
2

+
𝛾 is the standard

Hawking temperature. Obviously, the corrected Hawking
temperature is lower than the standard one. The correction
is related not only to the mass and angular momentum of the
black string but also to the quantum number (mass, angular
momentum, and energy) of the emitted fermion. Due to 𝜒 >
0, there is a balance point. At this point, the evaporation stops
and the remnant is left.

5. Conclusion

In this paper, taking into account the influence of quantum
gravity, we modified the Dirac equation in curved spacetime
by the modified fundamental commutation relations put for-
ward in [33]. Then the tunnelling radiation of fermions from
the event horizons of the charged and rotating black strings
was investigated. The corrected Hawking temperatures were
gotten. In the charged spacetime, the correction is related
not only to the mass and charge of the black string but also
to the quantum number (mass, charge, and energy) of the
emitted fermion. In the rotating spacetime, the quantum
number (mass, angular momentum, and energy) of the
emitted fermion and the mass and angular momentum of the
black string affect the Hawking temperature at the same time.
Due to the quantum gravity corrections, the evaporation of
the black strings slows down. Finally, the evaporation stops
and the remnants are left.The remnants in the final state were
also discussed in [55–58]. It is of interest to discuss remnants.
A review of this topic can be found in [59].

When 𝛽 = 0, the standard Hawking temperatures are
recovered.
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