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It has been increasingly important for breeding programs to be aimed at crops that
are capable of coping with a changing climate, especially with regards to higher
frequency and intensity of drought events. Grass stomatal complex has been proposed
as an important factor that may enable grasses to adapt to water stress and variable
climate conditions. There are many studies focusing on the stomatal morphology
and development in the eudicot model plant Arabidopsis and monocot model
plant Brachypodium. However, the comprehensive understanding of the distinction
of stomatal structure and development between monocots and eudicots, especially
between grasses and eudicots, are still less known at evolutionary and comparative
genetic levels. Therefore, we employed the newly released version of the One Thousand
Plant Transcriptome (OneKP) database and existing databases of green plant genome
assemblies to explore the evolution of gene families that contributed to the formation
of the unique structure and development of grass stomata. This review emphasizes the
differential stomatal morphology, developmental mechanisms, and guard cell signaling
in monocots and eudicots. We provide a summary of useful molecular evidences for
the high water use efficiency of grass stomata that may offer new horizons for future
success in breeding climate resilient crops.

Keywords: epidermal patterning, guard cell signaling, molecular breeding, stomatal development, stomatal
structure

INTRODUCTION

Global food demand and consumption is at historically high levels and the current level of crops
may not be sustainable if their production is not able to keep up with the population growth and
adapt to the changing climate (FAO et al., 2019). Therefore, future molecular and conventional
crop breeding approaches are suggested to aim at new cultivars that can maximize yield under
a capricious climate (Bailey-Serres et al., 2019; Faralli et al., 2019). One of the positive climate
adaptation strategies for agriculture is irrigation, which allows crops to buffer against climate
variability (Lobell et al., 2009). However, over-irrigation depletes groundwater and diminishes
surface water supplies (Zhu et al., 2019). Therefore, water use efficiency (WUE), the ratio of carbon
gains to water use, directed by photosynthesis and gas exchange level, becomes one of the most
important challenging targets for crop improvement (Leakey et al., 2019).
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Drought is one of the most detrimental abiotic stresses,
threatening sustainable food production (Lesk et al., 2016). Water
deficit in plants is caused by insufficient soil water availability
and high vapor pressure deficit, resulting in a change in plant
water status and restricting plant development and productivity
(Tardieu et al., 2018). As drought tolerance is a complex trait,
breeding for drought tolerance by targeting single genes has
not resulted in significant success so far (Tester and Langridge,
2010; Tardieu et al., 2018). Therefore, it is vital to combine
quantitative trait loci (QTL) identification, gene pyramiding,
genome editing, and other molecular breeding technologies to
study fundamental phenotypic traits (e.g., deep root, efficient
metabolism for desiccation tolerance) in order to improve WUE
and drought tolerance of crops.

Stomatal opening facilitates CO2 uptake and water loss in
plants. However, the increased transpiration rate will induce
stomatal closure to stabilize transpiration (Mott and Parkhurst,
1991; Hepworth et al., 2018). This feedback loop is an
important short-term physiological mechanism triggered by
plants under water stress (Martínez-Vilalta and Garcia-Forner,
2017). Therefore, understanding the mechanisms of stomatal
movement is crucial in regulating plant performance under the
forthcoming predicted increasing frequency and intensity of
droughts across the globe (Barral, 2019). Furthermore, stomatal
movement becomes an obvious target for breeding crops with
high WUE and drought tolerance (Lawson and Blatt, 2014;
McAusland et al., 2016).

Numerous studies have shown that stomatal structure affects
plants’ response to the environmental cues (Hetherington and
Woodward, 2003; Franks and Farquhar, 2007; Berry et al.,
2010). Species of the grass (Poaceae) family have distinctive
dumbbell-shaped guard cells (GCs) and specialized subsidiarry
cells (SCs), forming an efficient stomatal complex (Franks and
Farquhar, 2007; Chen et al., 2017). For example, light can
induce faster stomatal opening in grass species such as barley
(Hordeum vulgare) and sugarcane (Saccharum officinarum) than
those in eudicots like broad bean (Vicia faba) and soybean
(Glycine max) (Grantz and Assmann, 1991; Kaiser and Kappen,
1997). Moreover, wheat (Triticum aestivum) has significantly
faster stomatal opening than Tradescantia virginiana, Nephrolepis
exaltata, and Huperzia prolifera (Franks and Farquhar, 2007). In
the 1970s, it was proposed that the potassium shuttling between
guard cells and subsidiary cells may be the key mechanism for
rapid stomatal opening in grasses (Raschke and Fellows, 1971).
Later, researchers found the effect of blue-light stimulus on rapid
opening of grass stomata (Johnsson et al., 1976; Karlsson and
Assmann, 1990; Grantz and Assmann, 1991; Assmann and Jegla,
2016), which explained the mechanical advantage and osmotic
shuttling of grass stomata. These characteristics allow for a faster
grass stomata response than any other stomatal types. Thus, it was
proposed that water and resource utilization have been optimized
in grass-specific stomatal complexes during evolution (Franks
and Farquhar, 2007). In recent years, there have been huge
advancements in the genome sequencing and funcational analysis
of genes for stomatal regulation, epidermal patterning, and
stomatal development (Raschke and Fellows, 1971; Blatt, 2000;
Nadeau and Sack, 2002; Hetherington and Woodward, 2003;

Shpak et al., 2005; Abdulrahaman et al., 2009; Berry et al.,
2010; Facette and Smith, 2012; Pillitteri and Torii, 2012; Drake
et al., 2013; Kollist et al., 2014; Raven, 2014; Cai et al., 2017;
Rudall et al., 2017; Han and Torii, 2019). However, the molecular
evolution of key gene families for stomatal development and
the distinction between eudicot and monocot stomatal structure
across a comprehensive set of plant species, representing the
major lineages of angiosperms, have not been fully investigated.

This review highlights the unique morphological structure
and developmental process of grass stomata and summarizes
the contribution of Arabidopsis homologous genes in a large
number of eudicot and monocots, including grasses. We found
that some gene families involved in the lineage-specific stomatal
file specification or polarization have certain levels of distinction
between monocots and eudicots. We hypothesized that relevant
gene families [e.g., SPCH, MUTE, FAMA (SMFs), Breaking of
Asymmetry in the Stomatal Lineage (BASLs), and PANGLOSS
(PANs)] determine stomatal structure and development, which
may further influence stomatal movement and potentially
regulate WUE in plants (Chen et al., 2017; Li et al., 2017; Lawson
and Vialet-Chabrand, 2018). For more comprehensive reviews of
stomatal development and function, the readers are directed to
the following excellent articles (Qu et al., 2017; Hepworth et al.,
2018; Faralli et al., 2019; Lawson and Vialet-Chabrand, 2018;
Tardieu et al., 2018; Leakey et al., 2019).

CLASSIFICATION OF PLANT STOMATAL
MORPHOLOGY

Based on the existence and position of lateral subsidiary cells
(LSCs) and shape of GCs, stomata can be divided into seven
major morphological classes: anomocytic (no obvious SCs),
actinocytic complexes (a circle of radiating SCs), paracytic
(LSCs), graminoid (dumbbell-shaped GCs with LSCs), tetracytic
(LSCs and polar SCs), diacytic (perpendicular SCs), and
cyclocytic (four or more similarly sized SCs) (Abbe et al., 1951;
Frynsclaessens and Van Cotthem, 1973; Nunes et al., 2019).
Mature monocot stomatal complex is classified into anomocytic,
paracytic, and tetracytic (Rudall et al., 2017) and graminoid
is a special type of paracytic (Figure 1A). A majority of the
studies on stomatal function are conducted on ‘kidney-shaped’
GCs in most eudicots (Nadeau and Sack, 2002; Hamel et al.,
2006; Macalister et al., 2007; Lampard et al., 2008; Hara et al.,
2009; Pires and Dolan, 2010; Zhang et al., 2015; Houbaert
et al., 2018) and some are on the ‘dumbbell-shaped’ stomatal
complex in grasses (Cartwright et al., 2009; Raissig et al., 2016,
2017; Chen et al., 2017; Hughes et al., 2017; Hepworth et al.,
2018; Caine et al., 2019; Dunn et al., 2019). The stomatal
complex of grass species may have facilitated their evolutionary
success (Franks and Farquhar, 2007; Cai et al., 2017), resulting
in better adaptation under water deficient environments with
significant biomass production (Lawson and Vialet-Chabrand,
2018). Dumbbell-shaped GCs are a characteristic structure of
Poaceae (Stebbins and Shah, 1960), which provides these species
with faster responses to environmental changes (Franks and
Farquhar, 2007; Cai et al., 2017; Chen et al., 2017) and a
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FIGURE 1 | Linking stomatal morphology to the evolution of key gene families in angiosperms. (A) Morphological classification of stomata in monocots based on the
presence and number of subsidiary cells. Anomocytic without obvious SCs; paracytic with two lateral subsidiary cells; graminoid is a special form of paracytic with
two dumbbell-shape guard cells and two lateral subsidiary cells; tetracytic with two lateral subsidiary cells and two polar subsidiary cells. (B) A total of 411 eudicots
and monocots in OneKP project were use in this study and species with graminoid stomata were separated from other species. Predicted putative sequence files of
gene families that are relevant to stomatal development were obtained from OneKP Orthogroups Extractor (http://jlmwiki.plantbio.uga.edu/onekp/v2/), the number of
genes of each family in each species was counted. With the distribution of gene families, the contribution of gene families that cause graminoid stomata specifically
was computed by Xgboost (R package) with default parameters. Gene families with an importance of more than 0.05 were plotted.

closer morphological and physiological connection between GCs
and SCs than other monocots and eudicots (Frynsclaessens
and Van Cotthem, 1973; Tomlinson, 1974; Rudall et al., 2013;
Rudall et al., 2017).

STOMATAL DEVELOPMENT PROCESS
AND REGULATORY MODELS

Stomatal development and epidermal patterning have been
extensively studied mainly in Arabidopsis, Brachypodium,
maize, and moss (Nadeau and Sack, 2002; Cartwright et al.,
2009; Chater et al., 2017; Raissig et al., 2017; Houbaert
et al., 2018). Indeed, monocots and eudicots have huge
differences in stomatal development and epidermal patterning.
In eudicots, protodermal cell produces meristemoid mother cell
(MMC), which asymmetrically divides into stomatal lineage
ground cell (SLGC) and meristemoid (M). Meristemoids
subsequently differentiate into guard mother cells (GMCs)
through asymmetrical division, and division of GMCs produces
Young Guard Cells (YGCs). After cell expansion and pore
formation, YGCs develop into Mature GCs (MGCs). Moreover,

SLGC is another initial point as it can reversely generate
another stomatal lineage precursor (M + SLGC) or form a
pavement cell (Peterson et al., 2010; Pillitteri and Torii, 2012;
Vatén and Bergmann, 2012; Han and Torii, 2016, 2019). Most
eudicots, including Arabidopsis, have random GC orientation
and epidermal patterning (Zhao and Sack, 1999). However, the
formation of grasses’ LSCs is still not fully understood due to
the complex structure and underlying molecular mechanisms. It
was suggested that GMCs induce MGC formation via symmetric
divisions and subsidiary mother cell (SMC) via asymmetric
divisions in grasses, resulting in divergent stomatal morphology
(Raissig et al., 2016, 2017; Hepworth et al., 2018). On the
contrary, polar subsidiary cells of tetracytic stomata are strictly
mesogene cells because they initiated from stomatal cell files
(Rudall et al., 2017; Nunes et al., 2019). It is also worth noting
that not all the stomatal developmental patterns are well-ordered
and axially polarized among monocots. For example, stomatal
orientation is transverse in some Stemona and Lapageria
species, but is random in some Araceae and Dioscorea species
(Abdulrahaman et al., 2009; Rudall et al., 2017).

The extrinsic and intrinsic signals regulate the stomatal
development and epidermal patterning in plants and most of
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the studies employed the model plant Arabidopsis (Peterson
et al., 2010; Pillitteri and Torii, 2012; Han and Torii,
2019). The heterodimers of basic Helix-Loop-Helix (bHLH)
transcription factors specify stomatal precursor cell states
(Weintraub et al., 1991). In different developmental stages,
two universal components, SCRM/ICE1 and SCRM2, bind with
different members of bHLH subgroup Ia SPEECHLESS (SPCH),
MUTE, and FAMA, which were recently renamed as SMFs
(SPCH, MUTE, FAMA) (Qu et al., 2017). The interactions of
ICE1/SCRM2 and SPEECHLESS (SPCH), MUTE, and FAMA
promote MMC, GMC and MGC stages respectively (Ohashi-
Ito and Bergmann, 2006; Macalister et al., 2007; Pillitteri
et al., 2007; Kanaoka et al., 2008). The leucine-rich repeat
receptor (LRR) kinase complex that includes receptor-like
protein Too Many Mouths (TMM), ERECTA family (ER),
and Somatic Embryogenesis Receptor Kinase (SERK) are the
primary receptors that transduce extrinsic signals (Shimada et al.,
2000; Nadeau and Sack, 2002; Lukowitz et al., 2004; Shpak
et al., 2005; Meng et al., 2015). LRR family transduces the
developmental signal from EPFs. TMM is a signal modulator
that establishes ligand-receptor pairs EPF2-ERECTA and EPF1-
ERL1 to specify stomatal developmental initiation and spacing
division (Lee et al., 2012). The Mitogen-Activated Protein Kinase
(MAPK) cascade, including the MAPKKK/Embryo Defective71
(YODA), MPKK4/5, and MAPK MPK3/6, are also involved
in this process to inhibit stomatal development and epidermal
patterning (Lampard et al., 2008, 2009; Hara et al., 2009; Lee
et al., 2015). In Arabidopsis, the polarity protein BASL serves
as the scaffold for the MAPK kinase cascade, which determines
asymmetric cell division (Dong et al., 2009; Zhang et al., 2015; Qu
et al., 2017). In addition, proteins of BREVIS RADIX (AtBRX)-
like family and Polar Localization during Asymmetric Division
and Redistribution (POLAR) family have been confirmed to play
key roles in stomatal development and epidermal patterning
(Nunes et al., 2019).

Although bHLH, SMF, and SCRM/SCRM2 may share a close
phylogenetic relationship in land plants (Liu et al., 2009; Ran
et al., 2013; Cai et al., 2017), the diversification of stomatal
patterning among different plant species suggests there may
be lineage-specific stomatal developmental regulation during
evolution (Qu et al., 2017). Based on functionally confirmed
genes relevant to stomatal development in Arabidopsis, many
studies on their orthologs in grasses have been conducted.
Evidence has shown that in three bHLH paralogs, the function
of FAMA is conserved across monocots and dicots, however,
divergence existed in MUTE and SPCH (Liu et al., 2009). It may
be due to the fact that two asymmetric divisions are needed for
the formation of grass stomatal complexes. The paralogs of bHLH
that regulate these divisions may have some functional diversity
compared to Arabidopsis (Raissig et al., 2016; Hepworth et al.,
2018). For instance, it was reported that two functional SPCH
paralogs are partially redundant and BdICE1/BdSCRM2 control
stomatal development in different temporal or spatial process in
Brachypodium distachyon (Raissig et al., 2016). These important
regulators may be likely to produce special epidermal patterning
and stomatal morphology. Moreover, BdMUTE in specific SCs
is related to its mobility across cells and the presence of SCs

allows B. distachyon stomata greater responsiveness and better
resilience to the environment (Raissig et al., 2017). Therefore,
manipulating SC property in grasses may be an effective approach
in enhancing photosynthetic performance and WUE for the
breeding of climate resilient crops.

In grasses, HvEPF1, OsEPF1, and TaEPF1 of the major cereal
crops have been functionally characterized. These EPFs inhibited
GMC formation and arrest GMC development before SMC
generation, causing substantial reduction of stomatal density in
plants for better WUE without impacting grain yield in barley,
rice, and wheat (Hughes et al., 2017; Caine et al., 2019; Dunn
et al., 2019). It is interesting that gene duplication of EPFs/EFPL9s
occurs in H. vulgare, T. aestivum, B. distachyon, and Oryza
sativa and may be related to the bHLH functional diversity and
parallel evolution of EPF signaling peptides for unequal stomatal
complexes formation (Hepworth et al., 2018). Furthermore, some
novel proteins for stomatal development have shown distinctive
differences with their Arabidopsis orthologs. A series of studies
suggests that SHORTROOT (SHRs) and SCARECROW (SCRs)
are involved in the stomatal file specification and GMC formation
in rice and maize (Kamiya et al., 2003; Slewinski et al.,
2014; Schuler et al., 2018; Wu et al., 2019). Moreover, unlike
BASL or POLAR in Arabidopsis, in maize, ZmSCAR/ZmWAVE
regulatory complex, which contains Abl-interactor (Abi), Nck-
associated protein (Nap), p53-inducible mRNA 121 (PIR121),
and haematopoietic stem progenitor cell 300 (HSPC300) (Ibarra
et al., 2005), is an initial marker of polarity, which polarize
two other LRR receptors: PANGLOSS1 (PAN1) and PANGLOSS
2 (PAN2) (Cartwright et al., 2009; Facette and Smith, 2012;
Facette et al., 2015). Both proteins promote polarization of
the lateral neighboring protodermal cells, leading to their
asymmetric division to form SMCs; their function may highlight
the unique regulation of stomatal patterning in grasses. These
studies provide promising perspectives to modify these genes for
breeding programs toward drought tolerant crops.

STOMATAL EVOLUTIONARY ANALYSIS
USING OneKP

The large bulk of experimental evidences and some unsolved
questions led to the potential evolutionary bioinformatics
solutions for better understanding of the stomatal distinction
between eudicots to monocots and for possible answers
that would link high WUE and speedy grass stomata. New
gene functions are generally considered to have arisen from
gene duplications (Force et al., 1999). The expansions or
contractions of gene family contribute to the dynamic evolution
of metabolism, physiological regulation and signaling networks
(Hanada et al., 2008). Since functional diversified paralogs of
bHLHs (Liu et al., 2009; Raissig et al., 2016) or EPFs/EPFL9
(Hepworth et al., 2018) were found in grasses, it is necessary
to figure out the relation between the stomata-associated gene
duplications and different stomatal structures, especially the
grass stomata. Combined comparative genetic analysis of known
gene families involved in stomatal development and epidermal
patterning, the distribution of these gene families may reveal the
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difference between basal angiosperm stomata, eudicot stomata,
and the unique nature of grass stomata (Figure 1).

The release of one thousand plant transcriptomes (OneKP)
provides the possibility to explore the evolution, duplication,
and expansions of major gene families in large numbers of
evolutionarily significant plant species (Leebens-Mack et al.,
2019), in which they sequenced the vegetative transcriptomes
of 1,124 species. Although it is difficult to include samples
from every growing stage or from different environments,
there were 80–90% universal genes conserved in the project
across the Viridiplantae. Furthermore, gene family sizes in these
transcriptomes have a significant correlation (r = 0.95) with
those limited numbers of fully sequenced genomes (Leebens-
Mack et al., 2019). In addition, cdhit (v.4.5.7) and HMMER
(v.3.1b2) were used to estimate gene-family size across OneKP
dataset. Sequence files for each gene family can be downloaded in
OneKP Orthogroups Extractor with a valid gene identifier from
one of 31 released genomes1, which facilitates the analysis of gene
duplication across a wide range of species.

The distribution of gene families related to stomatal
development may reveal the unique function of grass stomata
with the analysis of gene families of 411 monocots and eudicots.
Among these species, graminoid stomata has been distinguished
from other eudicots or monocots on the basis of previous
classification (Abbe et al., 1951; Frynsclaessens and Van Cotthem,
1973; Rudall et al., 2017; Nunes et al., 2019). Most of the
108 monocotyledonous species have paracytic or tetracytic
stomata, but some species in Alismatales, Dioscoreales, Liliales,
and Asparagales have anomocytic stomatal type (Supplementary
Table S1). The number of each gene family member of these
species has been counted and the gene duplication of species
were subjected for Xgboost analysis (Figure 1B). We found
that SMFs, SHRs, PANs, SCRMs, SCRs, TMMs, POLARs, and
SCAR/WAVE are the important gene families (Figure 1B),
which take part in the stomatal file specification and SMC
formation and polarization essential for lineage specific stomatal
developmental regulation.

In order to show distributions of gene family directly, a
phylogenetic tree was constructed for 411 OneKP species. The
tree has presented all the numbers of each gene family in
the representative Orders of angiosperms (Figure 2). Based on
the phylogeny, there is an evolutionary transition from species
of Chloranthales and Magnoliids as the basal angiosperms with
kidney-shaped GCs (Pillitteri and Torii, 2012) to more complex
stomata in monocots and eudicots. The most obvious gene
family is BASLs, due to its absence in most eudicots and all
monocots, indicating that there may be a unique polarity control
of grasses (Vatén and Bergmann, 2012). Moreover, the absence
not only occurs in transcriptomes, but also in sequenced and
assembled plant genomes2. Although both BASL and POLAR
drive stomatal file division, they function in two different cell
fates: a meristemoid to a stoma and a SLGC to a pavement
cell (Zhang et al., 2015; Houbaert et al., 2018). The sequential
distinction of BASL and POLAR may explain the absence of BASL

1http://jlmwiki.plantbio.uga.edu/onekp/v2/
2http://plants.ensembl.org/

but presence of POLAR in monocots. Furthermore, the gene
duplication analysis shows significant differences in major taxon
(Figure 3). EPFs/EPFLs/EPFL9 are not found in some monocot
clades, such as Dioscoreale and Pandanales, but are present in
grasses. It appears that BASLs only exist in eudicots and there
is at least one BASL homologue in most eudicot clades, except
for Caryophyllales.

We then used OneKP to compare gene duplications of
these gene families between grasses and other angiosperms. For
exploring the evolutionary relationship of these gene families,
Maximum Likelihood trees (Supplementary Figures S1–S10)
have been constructed via PROTGAMMAWAGF model in
RAxML (v8.2.12) (Stamatakis, 2014). Gene family distributions
and taxon information for all species are summarized in
Supplementary Table S2. In summary, we found some key gene
families related to stomatal development have certain levels of
different distribution in grasses in contrast to eudicots, especially
regarding the function in cell division polarity and initial
cell distribution. Their existence and duplication may provide
grasses some functions to acquire unique stomatal morphology.
However, the main limitation in this study is that the number
of species only represents a tiny fraction of the total number of
more than 300,000 angiosperms. Therefore, further investigation
is required when there are sufficient numbers of high quality
genome assemblies (i.e., 1,000) across the major orders and
families of angiosperms.

STOMATAL OPENING AND CLOSURE
IN GRASS

In addition to stomatal morphological structure and
development, many genetic and environmental factors are
involved in stomatal response (Lawson and Vialet-Chabrand,
2018). Light (Shimazaki et al., 2007; Babla et al., 2019), CO2
(Engineer et al., 2014; Kolbe et al., 2018), GC membrane
transport (Blatt, 2000; Hanba et al., 2004; Sade et al., 2010;
Perrone et al., 2012; Lawson and Blatt, 2014), abscisic acid
(ABA), reactive oxygen species (ROS), nitric oxide (NO),
Ca2+, and pH signaling (Yang et al., 2005; Bussis et al., 2006;
Hettenhausen et al., 2012; Chen et al., 2016; Wang et al.,
2018), and mesophyll photosynthesis (McAusland et al., 2016;
Lawson and Vialet-Chabrand, 2018) all determine the speed
and magnitude of stomatal movement. Moreover, many
environmental stimuli regulate stomatal opening and closure
via coordinated cell signaling and membrane transport activities
(Kollist et al., 2014).

Stomatal opening is tightly regulated by light (Shimazaki
et al., 2007). For instance, when GCs are illuminated
with blue light, photoreceptors phytochromes (PHOTs)
are triggered (Kinoshita et al., 2001; Christie, 2007) to
directly phosphorylate another protein kinase Blue Light
Signaling1 (BLUS1), which indirectly conveys the signal to
type 1 Protein Phosphatase (PP1) (Takemiya et al., 2013;
Takemiya and Shimazaki, 2016). Furthermore, a Raf-like protein
kinase, Blue light–dependent H+-ATPase Phosphorylation
(BHP), bound to BLUS1 forms a signaling complex with

Frontiers in Plant Science | www.frontiersin.org 5 April 2020 | Volume 11 | Article 333

http://jlmwiki.plantbio.uga.edu/onekp/v2/
http://plants.ensembl.org/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00333 April 19, 2020 Time: 12:18 # 6

Wang and Chen Structural Evolution of Grass Stomata

FIGURE 2 | Gene duplication of key gene families for stomatal development and epidermal patterning in a large range of angiosperms. ASTRAL-II15 (v.5.0.3) was
used to construct the species tree in OneKP project (https://doi.org/10.25739/8m7t-4e85), 411 eudicots and monocots were employed in this study according to
(Zhao et al., 2019). The datasets of each predicted gene family distribution across these species were added on the outside of tree by iTOL (https://itol.embl.de)
(Letunic and Bork, 1988). The light green and light red shades represent the Poales clade and eudicots, respectively. Color circles represent different clades in the
phylogenetic tree. The color scale shows the number of gene family members from high (green) to low (red), and black represents a missing value. SCR,
SCARECROW; SHR, SHORTROOT; SCRM, inducer of CBF expression; SMF, SPCH&MUTE&FAMA; EPF, epidermal patterning factor; EPFL, EPF-like; ERECTA, LRR
receptor-like serine/threonine-protein kinase; TMM, too many mouths receptor-like protein; MAPK mitogen-activated protein kinase; BASL, breaking asymmetry in
the stomatal lineage; POLAR, localization during asymmetric division and redistribution; BRX, brevis radix; PAN, PANGLOSS; NAP, Nck-associated protein; PIR,
p53-inducible mRNA.

PHOTs to phosphorylate plasma membrane H+-ATPase
(Hayashi et al., 2017), driving H+ pumping and causing
the hyperpolarization of the plasma membrane, activation

of inward rectifying K+ channels, and water uptake for
stomatal opening (Shimazaki et al., 2007; Marten et al.,
2010; Babla et al., 2019). Blue light is one of the most
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FIGURE 3 | Comparison of gene and gene family distribution for stomatal development and epidermal patterning in a large range of angiosperms. Average
gene-family size was counted for each clade. The heatmap was generated by pheatmap (R package) from predicted putative protein sequences of each gene family
and values have been scaled in the row direction. The order of clades is arranged according to the phylogenetic tree in Figure 2. The color scale shows number of
gene family members from high (green) to low (red), and black represents a missing value. Red arrows at the top of the figure represent the boundary between
eudicots and basal angiosperms and monocots and basal angiosperms, respectively. Abbreviations are the same as Figure 2.

influential stimuli triggering osmotic potential change and
stomatal opening in grass and eudicots (Johnsson et al.,
1976; Grantz and Assmann, 1991; Inoue et al., 2008).
Interestingly, the PHOTs locate in different sites for light
perception and phototropic bending in grass coleoptiles,
but the response position is more independent in dicots
(Yamamoto et al., 2014). Therefore, more research work
should be conducted to investigate the different underlying
mechanims between the grasses and eudicots in the key
gene families (e.g., proton pumps, photoreceptors, protein
kinases and phosphatases) that govern the light-induced
stomatal opening.

The drought hormone ABA is one of the major signals
that trigger stomatal closure (Hamel et al., 2006; Kollist et al.,
2014). In Arabidopsis, ATP-binding cassette (ABC) transporters
(AtABCG25, AtABCG40) regulate transmembrane ABA flux
(Kuromori et al., 2010). Then the ABA receptors, Pyrabactin
Resistance 1 (PYR)/PYR1-Like (PYL)/Regulatory Component
Of Aba Receptor (RCAR) perceive ABA (Melcher et al., 2009;
Cutler et al., 2010; Umezawa et al., 2010) and bind to protein
phosphatases type 2Cs (PP2Cs) (Ma et al., 2009; Park et al.,
2009) to activate the SNF1-Related Kinase 2s (SnRK2s) (Hauser
et al., 2011). The most important member of SnRK2s is

Open Stomata 1 (OST1/SnRK2.6), which directly interacts and
stimulates the S-type as well as the R-type anion channels
(Geiger et al., 2009; Imes et al., 2013). The activation of anion
channels results in the extrusion of anions and causes the
depolarization that triggers the opening of outwardly rectifying
K+ channel for K+ efflux from GCs for stomatal closure
(Weiner et al., 2010; Munemasa et al., 2015; Murata et al.,
2015). Current evidence shows that ABA controls grass stomatal
movement in a similar mechanism with some differences in
the ABA concentrations and specific gene expression in GCs
for eudicots and SCs for grasses and sustrates for the ion
channels (Matsuda et al., 2016; Wei et al., 2014; Mega et al.,
2019; Wu et al., 2019). It was found that the reciprocal
responses and concentration gradient of ABA in GCs and
SCs is likely to trigger fast stomatal opening and closing in
grasses (Nunes et al., 2019). In Arabidopsis, a typical eudicot,
AtSLAC1 anion channel is active in chloride-based media (Geiger
et al., 2009), but its homologs AtSLAH2 and AtSLAH3 require
exogenous nitrate for channel opening in oocyte and GC
systems (Geiger et al., 2011; Maierhofer et al., 2014). However,
OsSLAC1 was confirmed as a nitrate-selective channel in rice
(Sun et al., 2016) and ZmSLAC1 and HvSLAC1 also have
similar selectivity for nitrate over chloride (Qi et al., 2018;
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Schäfer et al., 2018). However, it is still unclear whether key genes
such as SLACs in grass stomata are the key determinant for the
fast stomatal closure without functional completmentation in
knockout mutants of eudicots.

CO2 mediated stomatal closure has also been well-investigated
(Kolbe et al., 2018). In the short-term, elevated concentration
of CO2 (eCO2) inhibits stomatal opening and leads to stomatal
closure. CO2 enters GCs through aquaporins (PIPs), then
interacts with the carbonic anhydrase (CAs) (Gray et al.,
2000; Lake et al., 2002). The interaction accelerates bicarbonate
(HCO3−) formation to activate anion channels for stomatal
closure (Negi et al., 2008; Tian et al., 2015). In the long-term,
exposure to elevated CO2 stimulates the activity of secreted
extracellular protease (CRSP), which evokes EPF2 and causes
the reduction of stomatal density, thus further reducing stomatal
conductance (Doheny-Adams et al., 2012; Engineer et al., 2014).
However, CAs showed evidence of different effects on stomatal
characteristics in Arabidopsis and grasses (Engineer et al., 2014;
Kolbe et al., 2018). It is still unclear whether key genes such
as CAs controlling stomatal CO2 sensing and signaling in grass
stomata are different from those in eudicots and whether they
are the key determinant for the fast stomatal opening and
closure in grasses.

BREEDING CROPS WITH HIGHLY
WATER USE EFFICIENT STOMATA

Drought tolerant crops have the capacity to mitigate the
damaging impacts of water deficit and allow plants to recover
after rehydration (Morgan, 1984; Juenger, 2013). Both stomatal
and non-stomatal controlling mechanisms are needed to cope
with variable soil water status, which has been confirmed in a
broad range of eudicot crops (Li et al., 2012; Wen et al., 2012;
Tardieu et al., 2018; Gorthi et al., 2019).

The big dilemma for breeding crops with WUE is that under
water stress, plants generally reduce their stomatal conductance
(gs), which also reduces net photosynthetic rate (A), biomass,
and yields (Tardieu et al., 2018). How can we improve WUE
of crops and maintain yield under water deficiency? Recently,
one study showed that without stomatal response to water stress,
yield decreased by 76% in soybeans (Gorthi et al., 2019). In
tomatoes, green light induced significant decreases in gs, and
increased WUE and maintained a relatively high photosynthetic
capability under short-term drought stress (Bian et al., 2019).
Overexpression of aquaporin in tomatoes (Sade et al., 2010) and
grapevines (Perrone et al., 2012) increased WUE under both
optimal and water stress conditions. For stomatal development,
it was shown that bHLHs are required for the development
of soybean stomata, revealing the relationship between the
accumulation sequence of GmSMFs and the initial growth stage
of mature GCs (Danzer et al., 2015). Despite the success in
breeding drought tolerant crops, most horticultural crops and
cash crops are eudicots that do not have stomata similar to
those in the crops of the grass family. It may be useful for
the engineering of complex grass stomatal structure into the
eudicot crop species for better WUE, drought tolerance, and

eventually higher yield and quality of agricultural produces in
future climatic conditions.

CONCLUSION AND FUTURE
PERSPECTIVES

With the increasing water deficiency and steadily growing
population, breeding crops with better water and resource use
efficiency is one of the top priorities in agriculture. Here, we
summarized that grasses may have outstanding advantages for
WUE due to their unique stomatal structure. We compared
relevant gene families to find the differences between grass
stomata and other monocotyledonous and dicotyledonous
stomata. We found that gene duplication or absence of some gene
families may contribute to the unique structure in grass stomata
as most of their functions are for stomatal file specification
and SMC formation and polarization (Figures 1–3). We
reviewed the differential stomatal morphology, developmental
mechanism, and GC signaling in monocots and eudicots.
We also compared key factors and underlying mechanisms
affecting stomatal opening and closure for WUE in grasses
and eudicots. Therefore, manipulation of genes responsible
for stomatal structure and development in crops of the grass
family could be an effective approach to enhance photosynthetic
performance and WUE for the breeding of climate resilient
crops. It might also open opportunities for future genome
editing and modification of these genes to change the stomatal
complex of eudicots, accounting for the majority of food crops,
to achieve a better WUE for sustainable food production.
Understanding the prominent adaptability of grass stomata
under drought stress is likely to provide breeding guidance
for other crops.
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