20 research outputs found
Numerical Study on the Hydrodynamic Characteristics of Submarine Pipelines under the Impact of Real-World Tsunami-Like Waves
Submarine pipelines have been extensively used for marine oil and gas extraction due to their high efficiency, safety, and low price. However, submarine pipelines are vulnerable to extreme waves (i.e., tsunami waves). Previous research has often used solitary waves as a basis for studying the impacts of tsunami waves on submarine pipelines, although the hydrodynamic characteristics and wave properties drastically differ from those of real-world tsunami waves. This paper numerically investigates the hydrodynamic characteristics of tsunami waves interacting with submarine pipelines, but instead uses an improved wave model to generate a tsunami-like wave that more closely resembles those encountered in the real-world. The tsunami-like wave generated based on a real-world tsunami wave profile recorded during a 2011 tsunami in Japan has been applied. Given the same wave height, simulation results show that peak hydrodynamic forces of the tsunami-like wave are greater than those of the solitary wave. Meanwhile, the duration of the acting force under the tsunami-like wave is much longer than that of the solitary wave. These findings underline the basic reasons for the destructive power of tsunamis. It is also noted that the hydrodynamic forces of the pipeline under the tsunami-like wave increase with wave height, but will decrease as water depth increases. In addition to the single pipeline, the complicated hydrodynamic characteristics of pipelines in tandem arrangement have been also numerically studied. It is believed that the findings drawn from this paper can enhance our understanding of the induced forces on submarine pipelines under extreme tsunami waves.
Document type: Articl
Numerical Study of the Influence of Tidal Current on Submarine Pipeline Based on the SIFOM–FVCOM Coupling Model
The interaction between coastal ocean flows and the submarine pipeline involved with distinct physical phenomena occurring at a vast range of spatial and temporal scales has always been an important research subject. In this article, the hydrodynamic forces on the submarine pipeline and the characteristics of tidal flows around the pipeline are studied depending on a high-fidelity multi-physics modeling system (SIFOM⁻FVCOM), which is an integration of the Solver for Incompressible Flow on the Overset Meshes (SIFOM) and the Finite Volume Coastal Ocean Model (FVCOM). The interactions between coastal ocean flows and the submarine pipeline are numerically simulated in a channel flume, the results of which show that the hydrodynamic forces on the pipeline increase with the increase of tidal amplitude and the decrease of water depth. Additionally, when scour happens under the pipeline, the numerical simulation of the suspended pipeline is also carried out, showing that the maximum horizontal hydrodynamic forces on the pipeline reduce and the vertical hydrodynamic forces grow with the increase of the scour depth. According to the results of the simulations in this study, an empirical formula for estimating the hydrodynamic forces on the submarine pipeline caused by coastal ocean flows is given, which might be useful in engineering problems. The results of the study also reveal the basic features of flow structures around the submarine pipeline and its hydrodynamic forces caused by tidal flows, which contributes to the design of submarine pipelines
Numerical Study on the Hydrodynamic Characteristics of Submarine Pipelines under the Impact of Real-World Tsunami-Like Waves
Submarine pipelines have been extensively used for marine oil and gas extraction due to their high efficiency, safety, and low price. However, submarine pipelines are vulnerable to extreme waves (i.e., tsunami waves). Previous research has often used solitary waves as a basis for studying the impacts of tsunami waves on submarine pipelines, although the hydrodynamic characteristics and wave properties drastically differ from those of real-world tsunami waves. This paper numerically investigates the hydrodynamic characteristics of tsunami waves interacting with submarine pipelines, but instead uses an improved wave model to generate a tsunami-like wave that more closely resembles those encountered in the real-world. The tsunami-like wave generated based on a real-world tsunami wave profile recorded during a 2011 tsunami in Japan has been applied. Given the same wave height, simulation results show that peak hydrodynamic forces of the tsunami-like wave are greater than those of the solitary wave. Meanwhile, the duration of the acting force under the tsunami-like wave is much longer than that of the solitary wave. These findings underline the basic reasons for the destructive power of tsunamis. It is also noted that the hydrodynamic forces of the pipeline under the tsunami-like wave increase with wave height, but will decrease as water depth increases. In addition to the single pipeline, the complicated hydrodynamic characteristics of pipelines in tandem arrangement have been also numerically studied. It is believed that the findings drawn from this paper can enhance our understanding of the induced forces on submarine pipelines under extreme tsunami waves
Physical and Numerical Investigations on Wave Run-Up and Dissipation under Breakwater with Fence Revetment
Revetment elements and protective facilities on a breakwater can effectively weaken the impact of waves. In order to resist storm surges, there is a plan to build a breakwater on the northern shore of Meizhou Bay in Putian City, China. To better design it, considering different environmental conditions, physical and numerical experiments were carried out to accurately study the effects of the breakwater and its auxiliary structures on wave propagation. In the experiments, the influence of the wave type, initial water depth, and the structure of the fence plate are considered. The wave run-up and dissipation, the wave overtopping volume, and the structure stability are analyzed. The results indicate that the breakwater can effectively resist the wave impact, reduce the wave run-up and overtopping, and protect the rear buildings. In addition, under the same still water depth and significant wave height, the amount of overtopped water under regular waves is larger than that under irregular waves. With the increase of the still water depth and significant wave height, the overtopped water increases, which means that when the storm surge occurs, damage on the breakwater under the high tide level is greater than that under the low tide level. Besides, the fence plate can effectively dissipate energy and reduce the overtopping volume by generating eddy current in the cavity. Considering the stability and the energy dissipation capacity of the fence plate, it is suggested that a gap ratio of 50% is reasonable
Physical and Numerical Investigations on Wave Run-Up and Dissipation under Breakwater with Fence Revetment
Revetment elements and protective facilities on a breakwater can effectively weaken the impact of waves. In order to resist storm surges, there is a plan to build a breakwater on the northern shore of Meizhou Bay in Putian City, China. To better design it, considering different environmental conditions, physical and numerical experiments were carried out to accurately study the effects of the breakwater and its auxiliary structures on wave propagation. In the experiments, the influence of the wave type, initial water depth, and the structure of the fence plate are considered. The wave run-up and dissipation, the wave overtopping volume, and the structure stability are analyzed. The results indicate that the breakwater can effectively resist the wave impact, reduce the wave run-up and overtopping, and protect the rear buildings. In addition, under the same still water depth and significant wave height, the amount of overtopped water under regular waves is larger than that under irregular waves. With the increase of the still water depth and significant wave height, the overtopped water increases, which means that when the storm surge occurs, damage on the breakwater under the high tide level is greater than that under the low tide level. Besides, the fence plate can effectively dissipate energy and reduce the overtopping volume by generating eddy current in the cavity. Considering the stability and the energy dissipation capacity of the fence plate, it is suggested that a gap ratio of 50% is reasonable
Study on Hydrodynamic Characteristics and Environmental Response in Shantou Offshore Area
As a coastal trading city in China, Shantou has complex terrain and changeable sea conditions in its coastal waters. In order to better protect the coastal engineering and social property along the coast, based on the numerical simulation method, this paper constructed a detailed hydrodynamic model of the Shantou sea area, and the measured tide elevation and tidal current were used to verify the accuracy of the model. Based on the simulation results, the tide elevation and current in the study area were analyzed, including the flood and ebb tides of astronomical spring tide, the flood and ebb tides of astronomical neap tide, the high tide, and the low tide. In order to find the main tidal constituent types in this sea, the influence of different tidal constituents on tide elevation and tidal current in the study area was analyzed. At the same time, the storm surge model of the study area was constructed, and the flow field under Typhoon “Mangkhut” in the study area was simulated by using the real recorded data. Typhoon wind fields with different recurrence periods and intensities were constructed to simulate the change in the flow field, the sea water level, and the disaster situation along the coast. The results showed that under normal sea conditions, the sea water flows from southwest to northeast at flood tide and the flow direction is opposite at ebb tide. The tidal range is large in the northwest and small in the southeast of the study area. The tides in the study area are mainly controlled by M2, S2, K1, and O1 tidal constituents, but N2, K2, P1, and Q1 tidal constituents have significant effects on the high water level. The water level caused by typhoons increases significantly along the coast of Shantou City. In the west area of the Rong River estuary, a typhoon with a lower central pressure than 910 hPa may induce a water increase of more than 2 m