90 research outputs found

    Mechanistic examination of causes for narrow distribution in an endangered shrub: a comparison of its responses to drought stress with a widespread congeneric species

    Get PDF
    Although deep rooting is usually considered a drought-tolerant trait, we found that Syringapinnatifolia, a deep rooting and hydrotropic shrub, has a limited distribution in arid areas. To elucidate the mechanisms for its narrow distribution, we conducted two experiments to examine the physiological and morphological responses to water availability and heterogeneity in S. pinnatifolia and a widespread congeneric species, S. oblata. We measured gas exchange, water use efficiency, and plasticity index in plants of these two species grown at different levels of soil water regimes and in containers with patched water distribution. Our results showed that high photosynthetic capacity in the narrowly distributed S. pinnatifolia was an important factor enabling its survival in the harsh sub-alpine environment. High photosynthetic capacity in S. pinnatifolia, however, was obtained at the expense of high transpiratory water loss, resulting in lower integrative water use efficiency. Biomass allocation to roots in S. pinnatifolia increased by 73 % when soil water increased from 75 to 95 % field capacity, suggesting that S. pinnatifolia could be less competitive for above-ground resources under favorable water regimes. The horizontal root hydrotropism and vertical root hydrotropism of S. pinnatifolia in soil with patched water patterns were likely related to compensation for leaf water loss at low soil water level, indicating a limited capacity for homeostasis within the plant for water conservation and lower level of inherent drought-tolerance. In summary, greater degree of morphological plasticity but lower degree of physiological adjustment may be the main causes for the hydrotropism and narrow distribution of S. pinnatifolia in the sub-alpine habitats

    Impacts of Triglyceride Glucose-Waist to Height Ratio on Diabetes Incidence: A Secondary Analysis of A Population-Based Longitudinal Data

    Get PDF
    BackgroundThe anthropometric indices (body mass index [BMI], waist circumference [WC] and waist-to-height ratio [WHtR]), triglyceride-glucose (TyG) index and TyG-related indicators (TyG-WHtR, TyG-BMI, TyG-WC) have been well documented to be highly correlated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM). However, it was not immediately obvious which indicator would be optimal for screening people at risk of T2DM. Hence, this study intended to compare the predictive effects of the aforementioned markers on T2DM and to investigate the relation between baseline TyG-WHtR and incident T2DM.MethodsThis longitudinal study included 15464 study population who were involved in the NAGALA (NAfld in the Gifu Area Longitudinal Analysis) study from 2004 to 2015. The TyG index was defined as ln [FPG (mg/dL) ×fasting TG (mg/dL)/2]. And the TyG-WHtR was calculated as TyG index ×WHtR. We divided the participants into four groups according to the TyG-WHtR quartiles. The primary endpoint was the incidence of diabetes.ResultsAfter a median follow-up of 5.4 years, 2.4% (373/15464) participants developed diabetes. The incidence of diabetes increased with ascending TyG-WHtR quartiles (P for trend<0.001). Multivariable Cox proportional hazard analysis showed that a one-unit increase in TyG-WHtR was independently correlated with a 2.714-fold higher risk of diabetes [hazard ratio (HR) 2.714, 95% confidence interval (CI) 1.942-3.793; P<0.001). Stratification analysis revealed that increased TyG-WHtR (per 1-unit) was consistently correlated with diabetes incidence in different subgroups. Moreover, TyG-WHtR outperformed the other parameters by presenting the biggest area under the ROC curve (AUC) in men (AUC 0.746, 95% CI 0.716-0.776, P<0.001). However, all pairwise comparisons of AUC between TyG-WHtR and other indicators were not statistically different except TyG-WHtR vs. WHtR in women.ConclusionsA high TyG-WHtR is an important predictor of the increased cumulative risk of diabetes development. TyG-WHtR outperforms TyG, WHtR, TyG-WC and TyG-BMI in screening individuals who are susceptible to T2DM, especially in men

    Genetically modified adenoviral vector with the protein transduction domain of Tat improves gene transfer to CAR-deficient cells

    Get PDF
    The transduction efficiency of Ad (adenovirus) depends, to some extent, on the expression level of CAR (coxsackievirus and Ad receptor) of a target cell. The low level of CAR on the cell surface is a potential barrier to efficient gene transfer. To overcome this problem, PTD.AdeGFP (where eGFP is enhanced green fluorescent protein) was constructed by modifying the HI loop of Ad5 (Ad type 5) fibre with the Tat (trans-activating) PTD (protein transduction domain) derived from HIV. The present study showed that PTD.AdeGFP significantly improved gene transfer to multiple cell types deficient in expression of CAR. The improvement in gene transfer was not the result of charge-directed binding between the virus and the cell surface. Although PTD.AdeGFP formed aggregates, it infected target cells in a manner different from AdeGFP aggregates precipitated by calcium phosphate. In addition, PTD.AdeGFP was able to transduce target cells in a dynamin-independent pathway. The results provide some new clues as to how PTD.AdeGFP infects target cells. This new vector would be valuable in gene-function analysis and for gene therapy in cancer

    Promoting the process of determining brain death through standardized training

    Get PDF
    ObjectiveThis study aims to explore the training mode for brain death determination to ensure the quality of subsequent brain death determination.MethodsA four-skill and four-step (FFT) training model was adopted, which included a clinical neurological examination, an electroencephalogram (EEG) examination, a short-latency somatosensory evoked potential (SLSEP) examination, and a transcranial Doppler (TCD) examination. Each skill is divided into four steps: multimedia theory teaching, bedside demonstration, one-on-one real or dummy simulation training, and assessment. The authors analyzed the training results of 1,577 professional and technical personnel who participated in the FFT training model from 2013 to 2020 (25 sessions), including error rate analysis of the written examination, knowledge gap analysis, and influencing factors analysis.ResultsThe total error rates for all four written examination topics were < 5%, at 4.13% for SLSEP, 4.11% for EEG, 3.71% for TCD, and 3.65% for clinical evaluation. The knowledge gap analysis of the four-skill test papers suggested that the trainees had different knowledge gaps. Based on the univariate analysis and the multiple linear regression analysis, among the six factors, specialty categories, professional and technical titles, and hospital level were the independent influencing factors of answer errors (p < 0.01).ConclusionThe FFT model is suitable for brain death (BD) determination training in China; however, the authors should pay attention to the professional characteristics of participants, strengthen the knowledge gap training, and strive to narrow the difference in training quality

    FSCN1 Promotes Epithelial-Mesenchymal Transition Through Increasing Snail1 in Ovarian Cancer Cells

    Get PDF
    Background/Aims: Epithelial-mesenchymal transition (EMT) is one of the key mechanisms mediating cancer progression. Snail1 has a pivotal role in the regulation of EMT, involving the loss of E-cadherin and concomitant upregulation of vimentin, among other biomarkers. We have found FSCN1 promoted EMT in ovarian cancer cells, but the precise mechanism of FSCN1 in EMT process has not been clearly elucidated. Methods: The levels of FSCN1 and snail1 were determined in epithelial ovarian cancer(EOC) specimen and in ovarian cancer cells by RT-qPCR. The changes of EMT makers and effects on snail1 by FSCN1 were examined by overexpression or depletion of FSCN1 in EOC cells by RT-qPCR and western blotting. The invasiveness of the FSCN1-modified EOC cells was examined in transwell assay. Co-immunoprecipitation (IP) was performed to detect the interaction between snail1 and FSCN1 in EOC cells. Results: We found FSCN1 and snail1 significantly increased in EOC, and especially in EOC with metastasis. FSCN1 was positively correlated with snail1 expression at the cellular/histological levels. Moreover, we further showed that FSCN1 physiologically interacted with and increased the levels of snail1 to promote ovarian cancer cell EMT. Conclusion: FSCN1 promote EMT through snail1 in ovarian cancer cells. FSCN1 is an attractive novel target for inhibiting invasion and metastasis of EOC cells

    The role of adiponectin in the association between abdominal obesity and type 2 diabetes: a mediation analysis among 232,438 Chinese participants

    Get PDF
    BackgroundAdiposity and adipokines are closely associated with obesity-related metabolic abnormalities, but little is known regarding whether abdominal obesity is linked to type 2 diabetes mellitus (T2DM) through circulating adiponectin levels. Thus, this large-population–based study was designed to investigate the mediating effect of adiponectin in the relationship between abdominal obesity and T2DM.MethodsA total of 232,438 adults who lived in Dongguan, Guangdong Province, China, were enrolled in the present study. The circulating adiponectin concentrations were measured using latex-enhanced immunoturbidimetric assay. The association between circulating adiponectin and other clinical parameters was detected by Spearman’s correlation analysis. Restricted cubic spline (RCS) regression was also used to address the non-linearity of the relationship between waist circumference and diabetes. Mediation analyses of circulating adiponectin were conducted using linear and logistic regression.ResultsSubjects with abdominal obesity had lower levels of circulating adiponectin (P < 0.001). The circulating adiponectin value was inversely related to BMI (r = −0.370, P < 0.001), waist circumference (r = −0.361, P < 0.001), and fasting plasma glucose (r = −0.221, P < 0.001). The RCS plot showed a non-linear relation linking waist circumference with T2DM (P for non-linearity < 0.001). Patients with abdominal obesity presented 2.062 times higher odds of T2DM in comparison with those with non-abdominal obesity (odds ratio, 2.062; 95% confidence interval, 1.969–2.161) after adjusting for confounders. In the mediation analyses, the circulating adiponectin mediated the association between abdominal obesity and T2DM, with a mediation effect of 41.02% after adjustments. The above results were consistent in both men and women.ConclusionThe relationship between abdominal obesity and T2DM is mediated through circulating adiponectin level in adults, suggesting that circulating adiponectin might be a potential predictor for controlling the adverse progression from adiposity to T2DM

    Understanding PITX2-Dependent Atrial Fibrillation Mechanisms through Computational Models

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-07-16, pub-electronic 2021-07-19Publication status: PublishedFunder: National Key Research and Development Program of China; Grant(s): 2019YFC0120100, 2019YFC0121907Funder: National Natural Science Foundation of China; Grant(s): 61901192Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives

    Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars

    Get PDF
    Water lily, the member of the Nymphaeaceae family, is the symbol of Buddhism and Brahmanism in India. Despite its limited researches on flower color variations and formation mechanism, water lily has background of blue flowers and displays an exceptionally wide diversity of flower colors from purple, red, blue to yellow, in nature. In this study, 34 flavonoids were identified among 35 tropical cultivars by high-performance liquid chromatography (HPLC) with photodiode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS). Among them, four anthocyanins: delphinidin 3-O-rhamnosyl-5-O-galactoside (Dp3Rh5Ga), delphinidin 3-O-(2″-O-galloyl-6″-O-oxalyl-rhamnoside) (Dp3galloyl-oxalylRh), delphinidin 3-O-(6″-O-acetyl-β-glucopyranoside) (Dp3acetylG) and cyanidin 3- O-(2″-O-galloyl-galactopyranoside)-5-O-rhamnoside (Cy3galloylGa5Rh), one chalcone: chalcononaringenin 2′-O-galactoside (Chal2′Ga) and twelve flavonols: myricetin 7-O-rhamnosyl-(1→2)-rhamnoside (My7RhRh), quercetin 7-O-galactosyl-(1→2)-rhamnoside (Qu7GaRh), quercetin 7-O-galactoside (Qu7Ga), kaempferol 7-O-galactosyl-(1→2)-rhamnoside (Km7GaRh), myricetin 3-O-galactoside (My3Ga), kaempferol 7-O-galloylgalactosyl-(1→2)-rhamnoside (Km7galloylGaRh), myricetin 3-O-galloylrhamnoside (My3galloylRh), kaempferol 3-O-galactoside (Km3Ga), isorhamnetin 7-O-galactoside (Is7Ga), isorhamnetin 7-O-xyloside (Is7Xy), kaempferol 3-O-(3″-acetylrhamnoside) (Km3-3″acetylRh) and quercetin 3-O-acetylgalactoside (Qu3acetylGa) were identified in the petals of tropic water lily for the first time. Meanwhile a multivariate analysis was used to explore the relationship between pigments and flower color. By comparing, the cultivars which were detected delphinidin 3-galactoside (Dp3Ga) presented amaranth, and detected delphinidin 3′-galactoside (Dp3′Ga) presented blue. However, the derivatives of delphinidin and cyanidin were more complicated in red group. No anthocyanins were detected within white and yellow group. At the same time a possible flavonoid biosynthesis pathway of tropical water lily was presumed putatively. These studies will help to elucidate the evolution mechanism on the formation of flower colors and provide theoretical basis for outcross breeding and developing health care products from this plant

    Magnetic Separation Nanotechnology for Wastewater Treatment and Used Nuclear Fuel Recycle

    No full text
    Magnetic separation nanotechnology is an upcoming technology in the field of wastewater and nuclear waste treatment and environmental remediation for heavy metal and radioactive contaminants. Traditional separation methods such as centrifugation and filtration are usually labor-consumptive, uneconomical and thus impractical for large-scale water treatment. From this point of view, magnetic nanosorbents exhibit special superiority due to convenient separation by an external magnetic field. Other advantages of magnetic nanosorbents are low inventory utilization of nanosorbents, enhanced metal sorption efficiency and selectivity, and low production of secondary waste. This dissertation presents the study on our lab-made magnetic nanosorbents (referred to as dMNP-DTPA) double coated magnetic nanoparticles (dMNP) coupled with diethylene triamine pentaacetic acid (DTPA) and their potential to be used as effective sorbent materials to remove metal ions (bivalent heavy metals and trivalent lanthanides) from aqueous solutions. The metal sorption results show that the magnetic nanosorbents developed in our study possess a high stability, fast kinetics, and high sorption efficiency in harsh environments. The metal sorption on the dMNP-DTPA nanosorbents is reversible so that the metal-loaded dMNP-DTPA can be fast and effectively regenerated by the dilute acids. The sorption/desorption cycle experiments demonstrate that the dMNP-DTPA nanosorbents can be reused for a long time which helps to offset the synthesis cost and makes this technique cost-effective. To better explore the dynamic behavior of MNPs in a continuous flow, a simulation tool, Computational Fluid Dynamics (CFD), is applied in this study. The CFD models will help us to design a separation system that can be operated under continuous flow conditions.Thesis (Ph.D., Environmental Science) -- University of Idaho, 201
    corecore