22,383 research outputs found

    Monitoring of liquid flow through microtubes using a micropressure sensor

    No full text
    The pressure-driven liquid flow through microtubes was studied in a range of very low Reynolds numbers (<0.15) by monitoring the pressure change in situ. Cylindrical microtubes with diameters ranging from 50 ?m to 500 ?m were examined and two types of tube material, namely PEEK polymer and fused silica were compared. A good linear relation for the pressure drop versus flow rate was obtained. Apparent deviations between the measured slopes with those calculated using conventional theory were attributed to uncertainties in the calculated values which are dominated by the uncertainties in the microtube diameters. It was found that a period of stabilisation time was required for reaching a steady flow after the syringe pump was switched on/off or to a different flow rate. The stabilisation time was likely due to the compressibility of the fluid. Insignificant difference between PEEK polymer and fused silica microtubes in terms of flow resistance was observed. The in-situ measurement of pressure drops provides a convenient approach for monitoring fluid flow through microtubes and detecting dimensional changes within microchannels in Lab-on-a-Chip and microreactor systems

    The Chinese-French SVOM mission for Gamma-Ray Burst studies

    Full text link
    We present the Space-based multi-band astronomical Variable Objects Monitor mission (SVOM) decided by the Chinese National Space Agency (CNSA) and the French Space Agency (CNES). The mission which is designed to detect about 80 Gamma-Ray Bursts (GRBs) of all known types per year, will carry a very innovative scientific payload combining a gamma-ray coded mask imagers sensitive in the range 4 keV to 250 keV, a soft X-ray telescope operating between 0.5 to 2 keV, a gamma-ray spectro-photometer sensitive in the range 50 keV to 5 MeV, and an optical telescope able to measure the GRB afterglow emission down to a magnitude limit MR=23_R=23 with a 300 s exposure. A particular attention will be also paid to the follow-up in making easy the observation of the SVOM detected GRB by the largest ground based telescopes. Scheduled for a launch in 2013, it will provide fast and reliable GRB positions, will measure the broadband spectral energy distribution and temporal properties of the prompt emission, and will quickly identify the optical afterglows of detected GRBs, including those at very high redshift.Comment: Proceedings of the SF2A conference, Paris, 200

    Thermal Spin-Transfer Torques in Magnetoelectronic Devices

    Get PDF
    We predict that the magnetization direction of a ferromagnet can be reversed by the spin-transfer torque accompanying spin-polarized thermoelectric heat currents. We illustrate the concept by applying a finite-element theory of thermoelectric transport in disordered magnetoelectronic circuits and devices to metallic spin valves. When thermalization is not complete, a spin heat accumulation vector is found in the normal metal spacer, i.e., a directional imbalance in the temperature of majority and minority spins.Comment: Accepted for publication by Physical Review Letter

    Defining the Structural Consequences of Mechanism-Based Inactivation of Mammalian Cytochrome P450 2B4 Using Resonance Raman Spectroscopy

    Get PDF
    In view of the potent oxidizing strength of cytochrome P450 intermediates, it is not surprising that certain substrates can give rise to reactive species capable of attacking the heme or critical distal-pocket protein residues to irreversibly modify the enzyme in a process known as mechanism-based (MB) inactivation, a result that can have serious physiological consequences leading to adverse drug−drug interactions and toxicity. While methods exist to document the attachment of these substrate fragments, it is more difficult to gain insight into the structural basis for the altered functional properties of these modified enzymes. In response to this pressing need to better understand MB inhibition, we here report the first application of resonance Raman spectroscopy to study the inactivation of a truncated form of mammalian CYP2B4 by the acetylenic inhibitor 4-(tert-butyl)phenylacetylene, whose activated form is known to attach to the distal-pocket T302 residue of CYP2B4

    A 34.5 day quasi-periodic oscillation in gamma-ray emission from the blazar PKS 2247-131

    Full text link
    Since 2016 October, the active galaxy PKS 2247-131 has undergone a gamma-ray outburst, which we studied using data obtained with the Fermi Gamma-ray Space Telescope. The emission arises from a relativistic jet in PKS 2247-131, as an optical spectrum only shows a few weak absorption lines, typical of the BL Lacertae sub-class of the blazar class of active galactic nuclei. Here we report a ~34.5 day quasi-periodic oscillation (QPO) in the emission after the initial flux peak of the outburst. Compared to one-year time-scale QPOs, previously identified in blazars in Fermi energies, PKS 2247-131 exhibits the first clear case of a relatively short, month-like oscillation. We show that this QPO can be explained in terms of a helical structure in the jet, where the viewing angle to the dominant emission region in the jet undergoes periodic changes. The time scale of the QPO suggests the presence of binary supermassive black holes in PKS 2247-131.Comment: 6 pages, 4 figure

    Interacting topological phases and modular invariance

    Full text link
    We discuss a (2+1) dimensional topological superconductor with NfN_f left- and right-moving Majorana edge modes and a Z2×Z2\mathbb{Z}_2\times \mathbb{Z}_2 symmetry. In the absence of interactions, these phases are distinguished by an integral topological invariant NfN_f. With interactions, the edge state in the case Nf=8N_f=8 is unstable against interactions, and a Z2×Z2\mathbb{Z}_2\times \mathbb{Z}_2 invariant mass gap can be generated dynamically. We show that this phenomenon is closely related to the modular invariance of type II superstring theory. More generally, we show that the global gravitational anomaly of the non-chiral Majorana edge states is the physical manifestation of the bulk topological superconductors classified by Z8\mathbb{Z}_8.Comment: 11 page

    Detection of a quasi-periodic oscillation in gamma-ray light curve of the high redshift blazar B2 1520+31

    Full text link
    We detected a possible quasi-periodic oscillation (QPO) of ~ 71 days in the 0.1 -- 300 GeV gamma-ray Fermi-LAT light curve of the high redshift flat spectrum radio quasar B2 1520+31. We identify and confirm that quasi-period by Lomb Scargle periodogram (LSP), and weighted wavelet z-transform (WWZ) analyses. Using this QPO period, and assuming it originates from accretion-disc fluctuations at the innermost stable circular orbit, we estimate the central supermassive black hole mass to range between ~ 5.4 * 109^{9} M_{\odot} for a non-rotating black hole and ~ 6.0 * 1010^{10} M_{\odot} for a maximally rotating black hole. We briefly discuss other possible radio-loud active galactic nuclei emission models capable of producing a gamma-ray QPO of such a period in a blazar.Comment: 6 pages, 4 figures, Submitted to MNRA
    corecore