63 research outputs found

    Impact of Polymorphisms in PTK2 on Intrinsic Muscle Strength

    Get PDF
    Abstract Title: Impact of Polymorphisms in PTK2 on Intrinsic Muscle Strength Primary Presenter Full Name: Zachary Zeller Co-presenter Full Name(s): Click here to enter text. Co-author Full Name(s): Mohamed Al-Amoodi, Whitney Jones, Danny Lee, Steven Mckenzie, Helen Miller, Seth Stubblefied, Susan Knoblach, Heather Gordish-Dressman, Dustin Hittel, Laura L. Tosi Abstract Text (should not exceed 400 words): Recent studies have begun to search for correlations between genetic variations and muscle strength. One such study by Stebbings et al.1 examined two single nucleotide polymorphisms (SNPs)—rs7843014 and rs7460—on the PTK2 gene. The study found that genetic variation in the PTK2 gene impacts muscle-specific force, which is the force generated per unit of cross-sectional area of muscle. Muscle-specific force ultimately represents the intrinsic strength of a muscle and is a key determinant of functional capacity and mobility. This study sought to expand on prior research by looking for associations between genetic variants of PTK2 and measures of grip strength, as well as general anthropomorphic measures, in a cohort of healthy young adults. Our study assessed phenotypes for height, weight, VO2 max, max grip strength, and body mass index (BMI) using the Assessing Inherited Markers of Metabolic Syndrome in the Young (AIMMY) University of Calgary subset of 190 healthy, primarily Caucasian, individuals between the ages of 18 and 35. DNA samples were genotyped using ThermoFisher Taqman SNP genotype assays, and underwent the Applied Biosystems 7900HT real-time polymerase chain reaction (PCR) process. Analysis of covariance (ANCOVA) models were used to perform statistical analysis to look for genotype-phenotype associations. Unlike the findings by Stebbings et al.1 an association between the PTK2 genotypes and grip strength was not found. This could be due to the lower statistical power in the grip strength test, thus potentially indicating that grip strength and muscle-specific force do not measure similar parameters of muscle strength. Genetic variation in PTK2 has also been previously associated with VO2 max, but no association was found in the current study. Positive associations were found between genetic variants rs7843014 and rs7460 in PTK2 and BMI, and between genetic variant rs7843014 and height. High levels of functioning PTK2 have been found to have increased strength due to increased costamere density, resulting in more muscle myofibrils, and therein larger, presumably heavier muscles. However, this finding was only observed in males, and could be attributed to differential acquisition and maintenance of muscle mass based on sex. We identified a potentially novel association between genetic variants in PTK2 and anthropomorphic phenotypes. However, we were unable to confirm the effects of genetic variants on measures of intrinsic muscle strength, namely max grip strength or VO2 max in terms of functional capacity. Further research is needed to confirm this newly identified role for PTK2

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Limiting factors of aspen radial growth along a climatic and soil water budget gradient in south-western Siberia

    No full text
    International audienceUnderstanding how climate and soil hydrology control tree growth is critical to predict the response of Siberian ecosystems to climate change. The general aim of this study was to (i) characterize the soil water budget and identify the factors controlling aspen (Populus tremula L.) radial growth in south-western Siberia, and (ii) assess its potential response to future climate change. Along a gradient of climate and soil hydrological conditions, soil water budgets were reconstructed by modeling at four sites, and dendrochronological analyses were performed. Aspen growth potential was simulated in response to different climate change scenarios represented by shifts in soil water budgets. Simulated soil water budgets varied with climate variables, specifically increased temperature and drier summer combined with varying winter precipitation occurring as snowfall.. We show that plant-available soil water and drainage gradually increased while stress decreased from the warmest and driest (south, forest-steppe zone) site to the coldest and wettest (north, southern taiga zone) site. Aspen radial growth was mainly limited by summer temperature in the north and by summer water deficit in the south. Surprisingly, we did not find clear evidence of snow level impact on radial growth, either positively in the south (water supply and protection against soil freezing) or negatively in the north (water-logging and drainage). In the context of climate change, water stress intensity could increase dramatically in the south inhibiting aspen growth; in those places summer soil water content depends on the refilling that occurs at snow-melt and increasing winter precipitation could alleviate stress levels. Conversely, in the north, aspen growth may mostly benefit from rising temperature
    corecore