15 research outputs found

    Can Lebanon Export Cannabis for Medicinal Purposes?

    Get PDF
    The sale and consumption of cannabis are becoming more broadly accepted worldwide as research into its medicinal uses accelerates. Revenue in the global medical cannabis market is projected to reach 12.92 billion US dollars (USD) in 2023, and is expected to grow by 13.16% annually, resulting in a market volume of USD 23.97 billion by 2028. Moreover, Colombia, Costa Rica, Malaysia, Morocco, Thailand, Ukraine, the United States, and European Union countries have created regulatory frameworks for cannabis derivatives manufacturing and export and import licenses. As we previously argued, the goal of exporting cannabis from Lebanon for pharmaceutical processing and medicinal purposes should be welcome, despite many misunderstandings about Lebanon’s informal cannabis sector, as well as what would be required to establish a formal sector and ensure buy-in along the cannabis cultivation and export value chain. Among these challenges are cannabis importing country requirements and Lebanon’s ability to meet them

    Optical Analysis of a Hexagonal 42kWe High-flux Solar Simulator

    Get PDF
    AbstractA 42-kWe high-flux solar simulator with hexagonal reflector symmetry has been designed, built and optically characterized at IMDEA Energy Institute, Spain. This facility makes possible the lab-scale generation of a quasi-uniform high radiation flux density and high stagnation temperatures and it will be used as a platform for analyzing processes under concentrating solar energy conditions; for instance, central receivers in concentrating solar power plants and solar fuel production process in thermochemical reactors. The high-flux solar simulator consists of seven reflector-lamp pairs arranged in the center and vertices of a regular hexagon. The 6-kWe Xe short arc lamps are allocated in the primary focus of the corresponding truncated ellipsoidal reflector. This hexagonal symmetry provides compactness and quasi-uniform spatial distribution of the radiation at the system common focal plane.This work presents the experimental characterization of the solar simulator optical performance. Preliminary measurements indicate an average flux density at the focal plane of 3.5 MW/m2 that means 3,500 suns (1 sun = 1kW/m2) and stagnation temperature of approximately 2,800K

    ModĂ©lisation et simulation de signaux radioĂ©lectriques dans des environnements confinĂ©s Ă  l’aide d’une radio logicielle

    No full text
    Tracking an end user or a connected object is a very important aspect in many fields such as transportation and navigation. The most known external navigation system is the Global Positioning System (GPS). The operation is based on the unidirectional transmission of a satellite signal located at an altitude of over 20,000 km. GPS provides accurate positioning results outdoors. However, GPS signal suffers from low availability in difficult environments, such as the indoor positioning area. Many IoT applications require tracking continuity in the indoor domain. To make this possible, it is necessary to build an indoor tracking system for emergency applications.Radio frequency engineering has attracted the attention of the research community in both scientific and industrial fields. Software Defined Radio (SDR) is a well known concept in the field of radio frequency tracking, bringing new possibilities, and allow us to study and investigate existing radio frequency technologies such as LoRa (Long-Range Low-Power). The objective of this thesis is to propose an indoor tracking solution that exploits the radio signals emitted from indoors in order to build a radio architecture composed of fixed elements (Anchor nodes) whose coordinates are known and mobile terminals whose coordinates are to determined.To achieve the objective, an approach was considered during this thesis: In a first step, a state of the art has been performed on the existing research works that study wireless technologies in the field of indoor tracking. These works present an overview of the most promising technological solutions and techniques for indoor tracking. In addition, this step involves a general study of Software Defined Radio technology, which consists of two parts, a software part that includes the GNU Radio and a hardware part that includes the USRP (Universal Software Radio Peripheral).The second step consists of designing and developing embedded software that organizes wireless radio communications between elements communicating with the LoRa wireless technology. The LoRa signals were processed and simulated using a SDR platform. Using the SDR allows for easy visualization and analysis of the LoRa signal profiles. Processing, demodulating, and decoding the LoRa signal were also part of my assignments. The demodulation and decoding process was performed using the gr-lora library integrated into GNU Radio, as well as a USRP-based SDR.In the third step, an AoA-based localisation system was proposed and implemented on a SDR platform. The proposed system measures the phase difference between the two antennas of an SDR in GNU Radio. The algorithm consists of detecting the presence of the LoRa signal in the channel, computing the phase of the signal for each antenna of the receiver, and measuring the AoA and the location coordinates of a moving transmitter using trigonometric functions. In addition, detecting and tracking a weak LoRa signal was implemented via dual antenna SDR. Due to its CSS (Chirp Spread Spectrum) modulation, LoRa can demodulate a signal down to -20 dB below the noise level. The objective of detecting signals below the noise level is as follows: First, it will increase the battery lifetime of the LoRa device. Secondly, it extends the communication distance between devices. Finally, it secures our communication and data exchange by preventing third party devices from gaining access our location coordinates.Le suivi d'un utilisateur ou d'un objet connectĂ© est un aspect trĂšs important dans de nombreux domaines tels que le transport et la navigation. Le systĂšme de navigation externe le plus connu est le systĂšme de positionnement global (GPS). Son fonctionnement est basĂ© sur la transmission unidirectionnelle d'un signal satellite situĂ© Ă  une altitude de plus de 20 000 km. Le GPS fournit des rĂ©sultats de positionnement prĂ©cis en extĂ©rieur. Cependant, le signal GPS souffre d'une faible disponibilitĂ© dans les environnements difficiles, tels que la zone de positionnement intĂ©rieure. De nombreuses applications IoT nĂ©cessitent une continuitĂ© de suivi dans le domaine intĂ©rieur. Pour que cela soit possible, il est nĂ©cessaire de construire un systĂšme de suivi en intĂ©rieur pour les applications d'urgence.L'ingĂ©nierie des radiofrĂ©quences a attirĂ© l'attention de la communautĂ© des chercheurs dans les domaines scientifiques et industriels. La radio dĂ©finie par logiciel (SDR) est un concept bien connu dans le domaine du suivi par radiofrĂ©quence, apportant de nouvelles possibilitĂ©s, et nous permettant d'Ă©tudier et d'investiguer les technologies de radiofrĂ©quence existantes telles que LoRa (Long-Range Low-Power). L'objectif de cette thĂšse est de proposer une solution de tracking indoor qui exploite les signaux radio Ă©mis depuis l'intĂ©rieur des bĂątiments afin de construire une architecture radio composĂ©e d'Ă©lĂ©ments fixes (nƓuds d'ancrage) dont les coordonnĂ©es sont connues et de terminaux mobiles dont les coordonnĂ©es sont Ă  dĂ©terminer.Pour atteindre cet objectif, une approche a Ă©tĂ© envisagĂ©e au cours de cette thĂšse : Dans un premier temps, un Ă©tat de l'art a Ă©tĂ© rĂ©alisĂ© sur les travaux de recherche existants qui Ă©tudient les technologies sans fil dans le domaine du tracking indoor. Ces travaux prĂ©sentent une vue d'ensemble des solutions technologiques et des techniques les plus prometteuses pour le suivi en intĂ©rieur. En outre, cette Ă©tape comprend une Ă©tude gĂ©nĂ©rale de la technologie de la radio logicielle, qui se compose de deux parties, une partie logicielle qui comprend la radio GNU et une partie matĂ©rielle qui comprend l'USRP (Universal Software Radio Peripheral).La deuxiĂšme Ă©tape consiste Ă  concevoir et Ă  dĂ©velopper un logiciel embarquĂ© qui organise les communications radio sans fil entre les Ă©lĂ©ments communiquant avec la technologie sans fil LoRa. Les signaux LoRa ont Ă©tĂ© traitĂ©s et simulĂ©s Ă  l'aide d'une plateforme SDR. L'utilisation de la SDR permet de visualiser et d'analyser facilement les profils des signaux LoRa. Le traitement, la dĂ©modulation et le dĂ©codage du signal LoRa faisaient Ă©galement partie de mes tĂąches. Le processus de dĂ©modulation et de dĂ©codage a Ă©tĂ© rĂ©alisĂ© Ă  l'aide de la bibliothĂšque gr-lora intĂ©grĂ©e Ă  GNU Radio, ainsi que d'un SDR basĂ© sur l'USRP.Dans la troisiĂšme Ă©tape, un systĂšme de localisation basĂ© sur l'AoA a Ă©tĂ© proposĂ© et mis en Ɠuvre sur une plateforme SDR. Le systĂšme proposĂ© mesure la diffĂ©rence de phase entre les deux antennes d'un SDR dans GNU Radio. L'algorithme consiste Ă  dĂ©tecter la prĂ©sence du signal LoRa dans le canal, Ă  calculer la phase du signal pour chaque antenne du rĂ©cepteur, et Ă  mesurer l'AoA et les coordonnĂ©es de localisation d'un Ă©metteur mobile Ă  l'aide de fonctions trigonomĂ©triques. En outre, la dĂ©tection et le suivi d'un faible signal LoRa ont Ă©tĂ© mis en Ɠuvre Ă  l'aide d'une SDR Ă  double antenne. GrĂące Ă  sa modulation CSS (Chirp Spread Spectrum), LoRa peut dĂ©moduler un signal jusqu'Ă  -20 dB sous le niveau de bruit. L'objectif de la dĂ©tection des signaux en dessous du niveau de bruit est le suivant : PremiĂšrement, elle permet d'augmenter la durĂ©e de vie de la batterie du dispositif LoRa. Ensuite, elle permet d'Ă©tendre la distance de communication entre les dispositifs. Enfin, elle sĂ©curise notre communication et l'Ă©change de donnĂ©es en empĂȘchant les dispositifs tiers d'accĂ©der Ă  nos coordonnĂ©es de localisation

    ModĂ©lisation et simulation de signaux radioĂ©lectriques dans des environnements confinĂ©s Ă  l’aide d’une radio logicielle

    No full text
    Tracking an end user or a connected object is a very important aspect in many fields such as transportation and navigation. The most known external navigation system is the Global Positioning System (GPS). The operation is based on the unidirectional transmission of a satellite signal located at an altitude of over 20,000 km. GPS provides accurate positioning results outdoors. However, GPS signal suffers from low availability in difficult environments, such as the indoor positioning area. Many IoT applications require tracking continuity in the indoor domain. To make this possible, it is necessary to build an indoor tracking system for emergency applications.Radio frequency engineering has attracted the attention of the research community in both scientific and industrial fields. Software Defined Radio (SDR) is a well known concept in the field of radio frequency tracking, bringing new possibilities, and allow us to study and investigate existing radio frequency technologies such as LoRa (Long-Range Low-Power). The objective of this thesis is to propose an indoor tracking solution that exploits the radio signals emitted from indoors in order to build a radio architecture composed of fixed elements (Anchor nodes) whose coordinates are known and mobile terminals whose coordinates are to determined.To achieve the objective, an approach was considered during this thesis: In a first step, a state of the art has been performed on the existing research works that study wireless technologies in the field of indoor tracking. These works present an overview of the most promising technological solutions and techniques for indoor tracking. In addition, this step involves a general study of Software Defined Radio technology, which consists of two parts, a software part that includes the GNU Radio and a hardware part that includes the USRP (Universal Software Radio Peripheral).The second step consists of designing and developing embedded software that organizes wireless radio communications between elements communicating with the LoRa wireless technology. The LoRa signals were processed and simulated using a SDR platform. Using the SDR allows for easy visualization and analysis of the LoRa signal profiles. Processing, demodulating, and decoding the LoRa signal were also part of my assignments. The demodulation and decoding process was performed using the gr-lora library integrated into GNU Radio, as well as a USRP-based SDR.In the third step, an AoA-based localisation system was proposed and implemented on a SDR platform. The proposed system measures the phase difference between the two antennas of an SDR in GNU Radio. The algorithm consists of detecting the presence of the LoRa signal in the channel, computing the phase of the signal for each antenna of the receiver, and measuring the AoA and the location coordinates of a moving transmitter using trigonometric functions. In addition, detecting and tracking a weak LoRa signal was implemented via dual antenna SDR. Due to its CSS (Chirp Spread Spectrum) modulation, LoRa can demodulate a signal down to -20 dB below the noise level. The objective of detecting signals below the noise level is as follows: First, it will increase the battery lifetime of the LoRa device. Secondly, it extends the communication distance between devices. Finally, it secures our communication and data exchange by preventing third party devices from gaining access our location coordinates.Le suivi d'un utilisateur ou d'un objet connectĂ© est un aspect trĂšs important dans de nombreux domaines tels que le transport et la navigation. Le systĂšme de navigation externe le plus connu est le systĂšme de positionnement global (GPS). Son fonctionnement est basĂ© sur la transmission unidirectionnelle d'un signal satellite situĂ© Ă  une altitude de plus de 20 000 km. Le GPS fournit des rĂ©sultats de positionnement prĂ©cis en extĂ©rieur. Cependant, le signal GPS souffre d'une faible disponibilitĂ© dans les environnements difficiles, tels que la zone de positionnement intĂ©rieure. De nombreuses applications IoT nĂ©cessitent une continuitĂ© de suivi dans le domaine intĂ©rieur. Pour que cela soit possible, il est nĂ©cessaire de construire un systĂšme de suivi en intĂ©rieur pour les applications d'urgence.L'ingĂ©nierie des radiofrĂ©quences a attirĂ© l'attention de la communautĂ© des chercheurs dans les domaines scientifiques et industriels. La radio dĂ©finie par logiciel (SDR) est un concept bien connu dans le domaine du suivi par radiofrĂ©quence, apportant de nouvelles possibilitĂ©s, et nous permettant d'Ă©tudier et d'investiguer les technologies de radiofrĂ©quence existantes telles que LoRa (Long-Range Low-Power). L'objectif de cette thĂšse est de proposer une solution de tracking indoor qui exploite les signaux radio Ă©mis depuis l'intĂ©rieur des bĂątiments afin de construire une architecture radio composĂ©e d'Ă©lĂ©ments fixes (nƓuds d'ancrage) dont les coordonnĂ©es sont connues et de terminaux mobiles dont les coordonnĂ©es sont Ă  dĂ©terminer.Pour atteindre cet objectif, une approche a Ă©tĂ© envisagĂ©e au cours de cette thĂšse : Dans un premier temps, un Ă©tat de l'art a Ă©tĂ© rĂ©alisĂ© sur les travaux de recherche existants qui Ă©tudient les technologies sans fil dans le domaine du tracking indoor. Ces travaux prĂ©sentent une vue d'ensemble des solutions technologiques et des techniques les plus prometteuses pour le suivi en intĂ©rieur. En outre, cette Ă©tape comprend une Ă©tude gĂ©nĂ©rale de la technologie de la radio logicielle, qui se compose de deux parties, une partie logicielle qui comprend la radio GNU et une partie matĂ©rielle qui comprend l'USRP (Universal Software Radio Peripheral).La deuxiĂšme Ă©tape consiste Ă  concevoir et Ă  dĂ©velopper un logiciel embarquĂ© qui organise les communications radio sans fil entre les Ă©lĂ©ments communiquant avec la technologie sans fil LoRa. Les signaux LoRa ont Ă©tĂ© traitĂ©s et simulĂ©s Ă  l'aide d'une plateforme SDR. L'utilisation de la SDR permet de visualiser et d'analyser facilement les profils des signaux LoRa. Le traitement, la dĂ©modulation et le dĂ©codage du signal LoRa faisaient Ă©galement partie de mes tĂąches. Le processus de dĂ©modulation et de dĂ©codage a Ă©tĂ© rĂ©alisĂ© Ă  l'aide de la bibliothĂšque gr-lora intĂ©grĂ©e Ă  GNU Radio, ainsi que d'un SDR basĂ© sur l'USRP.Dans la troisiĂšme Ă©tape, un systĂšme de localisation basĂ© sur l'AoA a Ă©tĂ© proposĂ© et mis en Ɠuvre sur une plateforme SDR. Le systĂšme proposĂ© mesure la diffĂ©rence de phase entre les deux antennes d'un SDR dans GNU Radio. L'algorithme consiste Ă  dĂ©tecter la prĂ©sence du signal LoRa dans le canal, Ă  calculer la phase du signal pour chaque antenne du rĂ©cepteur, et Ă  mesurer l'AoA et les coordonnĂ©es de localisation d'un Ă©metteur mobile Ă  l'aide de fonctions trigonomĂ©triques. En outre, la dĂ©tection et le suivi d'un faible signal LoRa ont Ă©tĂ© mis en Ɠuvre Ă  l'aide d'une SDR Ă  double antenne. GrĂące Ă  sa modulation CSS (Chirp Spread Spectrum), LoRa peut dĂ©moduler un signal jusqu'Ă  -20 dB sous le niveau de bruit. L'objectif de la dĂ©tection des signaux en dessous du niveau de bruit est le suivant : PremiĂšrement, elle permet d'augmenter la durĂ©e de vie de la batterie du dispositif LoRa. Ensuite, elle permet d'Ă©tendre la distance de communication entre les dispositifs. Enfin, elle sĂ©curise notre communication et l'Ă©change de donnĂ©es en empĂȘchant les dispositifs tiers d'accĂ©der Ă  nos coordonnĂ©es de localisation

    ModĂ©lisation et simulation de signaux radioĂ©lectriques dans des environnements confinĂ©s Ă  l’aide d’une radio logicielle

    No full text
    Le suivi d'un utilisateur ou d'un objet connectĂ© est un aspect trĂšs important dans de nombreux domaines tels que le transport et la navigation. Le systĂšme de navigation externe le plus connu est le systĂšme de positionnement global (GPS). Son fonctionnement est basĂ© sur la transmission unidirectionnelle d'un signal satellite situĂ© Ă  une altitude de plus de 20 000 km. Le GPS fournit des rĂ©sultats de positionnement prĂ©cis en extĂ©rieur. Cependant, le signal GPS souffre d'une faible disponibilitĂ© dans les environnements difficiles, tels que la zone de positionnement intĂ©rieure. De nombreuses applications IoT nĂ©cessitent une continuitĂ© de suivi dans le domaine intĂ©rieur. Pour que cela soit possible, il est nĂ©cessaire de construire un systĂšme de suivi en intĂ©rieur pour les applications d'urgence.L'ingĂ©nierie des radiofrĂ©quences a attirĂ© l'attention de la communautĂ© des chercheurs dans les domaines scientifiques et industriels. La radio dĂ©finie par logiciel (SDR) est un concept bien connu dans le domaine du suivi par radiofrĂ©quence, apportant de nouvelles possibilitĂ©s, et nous permettant d'Ă©tudier et d'investiguer les technologies de radiofrĂ©quence existantes telles que LoRa (Long-Range Low-Power). L'objectif de cette thĂšse est de proposer une solution de tracking indoor qui exploite les signaux radio Ă©mis depuis l'intĂ©rieur des bĂątiments afin de construire une architecture radio composĂ©e d'Ă©lĂ©ments fixes (nƓuds d'ancrage) dont les coordonnĂ©es sont connues et de terminaux mobiles dont les coordonnĂ©es sont Ă  dĂ©terminer.Pour atteindre cet objectif, une approche a Ă©tĂ© envisagĂ©e au cours de cette thĂšse : Dans un premier temps, un Ă©tat de l'art a Ă©tĂ© rĂ©alisĂ© sur les travaux de recherche existants qui Ă©tudient les technologies sans fil dans le domaine du tracking indoor. Ces travaux prĂ©sentent une vue d'ensemble des solutions technologiques et des techniques les plus prometteuses pour le suivi en intĂ©rieur. En outre, cette Ă©tape comprend une Ă©tude gĂ©nĂ©rale de la technologie de la radio logicielle, qui se compose de deux parties, une partie logicielle qui comprend la radio GNU et une partie matĂ©rielle qui comprend l'USRP (Universal Software Radio Peripheral).La deuxiĂšme Ă©tape consiste Ă  concevoir et Ă  dĂ©velopper un logiciel embarquĂ© qui organise les communications radio sans fil entre les Ă©lĂ©ments communiquant avec la technologie sans fil LoRa. Les signaux LoRa ont Ă©tĂ© traitĂ©s et simulĂ©s Ă  l'aide d'une plateforme SDR. L'utilisation de la SDR permet de visualiser et d'analyser facilement les profils des signaux LoRa. Le traitement, la dĂ©modulation et le dĂ©codage du signal LoRa faisaient Ă©galement partie de mes tĂąches. Le processus de dĂ©modulation et de dĂ©codage a Ă©tĂ© rĂ©alisĂ© Ă  l'aide de la bibliothĂšque gr-lora intĂ©grĂ©e Ă  GNU Radio, ainsi que d'un SDR basĂ© sur l'USRP.Dans la troisiĂšme Ă©tape, un systĂšme de localisation basĂ© sur l'AoA a Ă©tĂ© proposĂ© et mis en Ɠuvre sur une plateforme SDR. Le systĂšme proposĂ© mesure la diffĂ©rence de phase entre les deux antennes d'un SDR dans GNU Radio. L'algorithme consiste Ă  dĂ©tecter la prĂ©sence du signal LoRa dans le canal, Ă  calculer la phase du signal pour chaque antenne du rĂ©cepteur, et Ă  mesurer l'AoA et les coordonnĂ©es de localisation d'un Ă©metteur mobile Ă  l'aide de fonctions trigonomĂ©triques. En outre, la dĂ©tection et le suivi d'un faible signal LoRa ont Ă©tĂ© mis en Ɠuvre Ă  l'aide d'une SDR Ă  double antenne. GrĂące Ă  sa modulation CSS (Chirp Spread Spectrum), LoRa peut dĂ©moduler un signal jusqu'Ă  -20 dB sous le niveau de bruit. L'objectif de la dĂ©tection des signaux en dessous du niveau de bruit est le suivant : PremiĂšrement, elle permet d'augmenter la durĂ©e de vie de la batterie du dispositif LoRa. Ensuite, elle permet d'Ă©tendre la distance de communication entre les dispositifs. Enfin, elle sĂ©curise notre communication et l'Ă©change de donnĂ©es en empĂȘchant les dispositifs tiers d'accĂ©der Ă  nos coordonnĂ©es de localisation.Tracking an end user or a connected object is a very important aspect in many fields such as transportation and navigation. The most known external navigation system is the Global Positioning System (GPS). The operation is based on the unidirectional transmission of a satellite signal located at an altitude of over 20,000 km. GPS provides accurate positioning results outdoors. However, GPS signal suffers from low availability in difficult environments, such as the indoor positioning area. Many IoT applications require tracking continuity in the indoor domain. To make this possible, it is necessary to build an indoor tracking system for emergency applications.Radio frequency engineering has attracted the attention of the research community in both scientific and industrial fields. Software Defined Radio (SDR) is a well known concept in the field of radio frequency tracking, bringing new possibilities, and allow us to study and investigate existing radio frequency technologies such as LoRa (Long-Range Low-Power). The objective of this thesis is to propose an indoor tracking solution that exploits the radio signals emitted from indoors in order to build a radio architecture composed of fixed elements (Anchor nodes) whose coordinates are known and mobile terminals whose coordinates are to determined.To achieve the objective, an approach was considered during this thesis: In a first step, a state of the art has been performed on the existing research works that study wireless technologies in the field of indoor tracking. These works present an overview of the most promising technological solutions and techniques for indoor tracking. In addition, this step involves a general study of Software Defined Radio technology, which consists of two parts, a software part that includes the GNU Radio and a hardware part that includes the USRP (Universal Software Radio Peripheral).The second step consists of designing and developing embedded software that organizes wireless radio communications between elements communicating with the LoRa wireless technology. The LoRa signals were processed and simulated using a SDR platform. Using the SDR allows for easy visualization and analysis of the LoRa signal profiles. Processing, demodulating, and decoding the LoRa signal were also part of my assignments. The demodulation and decoding process was performed using the gr-lora library integrated into GNU Radio, as well as a USRP-based SDR.In the third step, an AoA-based localisation system was proposed and implemented on a SDR platform. The proposed system measures the phase difference between the two antennas of an SDR in GNU Radio. The algorithm consists of detecting the presence of the LoRa signal in the channel, computing the phase of the signal for each antenna of the receiver, and measuring the AoA and the location coordinates of a moving transmitter using trigonometric functions. In addition, detecting and tracking a weak LoRa signal was implemented via dual antenna SDR. Due to its CSS (Chirp Spread Spectrum) modulation, LoRa can demodulate a signal down to -20 dB below the noise level. The objective of detecting signals below the noise level is as follows: First, it will increase the battery lifetime of the LoRa device. Secondly, it extends the communication distance between devices. Finally, it secures our communication and data exchange by preventing third party devices from gaining access our location coordinates

    Estudios de estados vibro-rotacionales del metileno 1B1 preparado por excitaciĂłn bifotĂłnica secuencial con lĂĄseres

    Get PDF
    El trabajo que se presenta se centra en la realizaciĂłn de medidas cinĂ©ticas de desactivaciĂłn de niveles rotacionales del ch2 1b1 (o,v2,o) seleccionados segĂșn su momento angular rotacional y su tipo de perturbaciĂłn intramolecular, por gases nobles y cetena. A partir de estas medidas se puede aportar informaciĂłn sobre la posible relaciĂłn entre la cinĂ©tica y los distintos tipos de perturbaciones presentes en los diferentes estados rovibronicos de la molĂ©cula renner-teller, spin-orbita, vibraciĂłn-rotaciĂłn, etc... A los datos experimentales se aplican modelos teĂłricos que permiten interpretarlos y proporcionar un conocimiento bĂĄsico de los procesos involucrados en las interacciones que dan lugar a la desactivaciĂłn de la molĂ©cula. La aplicaciĂłn de estos modelos facilita el conocimiento de las fuerzas que gobiernan las interacciones entre los componentes del par de colisiĂłn y el efecto que tienen los distintos acoplamientos y perturbaciones en la cinĂ©tica

    Measuring accurate Angle of Arrival of weak LoRa signals for Indoor Positionning

    No full text
    International audienceIn this paper, we propose an Autocorrelation method for measuring the angle of arrival (AoA) of a weak LoRa signal. A weak LoRa signal has a negative SNR down to −20 dB. The objective is to detect a LoRa signal that operates at low transmission power (TX). Operating at low transmission power (TX) reduces power consumption and extends the battery life of LoRa devices. Besides, the transmission of weak signals strengthens the radio communication protocol, preventing an enemy device from accessing the location coordinates. The detecting algorithm consists of finding Autocorrelation peaks of the LoRa signal. We show that Autocorrelation peaks decrease when the signal is buried in the noise. However, using a large number of Fast Fourier Transform (FFT) will increase the Autocorrelation peaks and the signal-to-noise ratio (SNR). Once the peak of the LoRa signal is detected under the noise, the algorithm will calculate the AoA. All of the proposed algorithms are implemented using a Universal Software Radio Peripheral (USRP), Software Defined Radio (SDR) receiver with the help of GNU Radio software. We, therefore, believe that our Autocorrelation method can detect the LoRa signal accurately and measure the AoA at very low SNR in real_ time being usable for indoor positionning

    Measuring accurate Angle of Arrival of weak LoRa signals for Indoor Positionning

    No full text
    International audienceIn this paper, we propose an Autocorrelation method for measuring the angle of arrival (AoA) of a weak LoRa signal. A weak LoRa signal has a negative SNR down to-20 dB. The objective is to detect a LoRa signal that operates at low transmission power (TX). Operating at low transmission power (TX) reduces power consumption and extends the battery life of LoRa devices. Besides, the transmission of weak signals strengthens the radio communication protocol, preventing an enemy device from accessing the location coordinates. The detecting algorithm consists of finding Autocorrelation peaks of the LoRa signal. We show that Autocorrelation peaks decrease when the signal is buried in the noise. However, using a large number of Fast Fourier Transform (FFT) will increase the Autocorrelation peaks and the signal-to-noise ratio (SNR). Once the peak of the LoRa signal is detected under the noise, the algorithm will calculate the AoA. All of the proposed algorithms are implemented using a Universal Software Radio Peripheral (USRP), Software Defined Radio (SDR) receiver with the help of GNU Radio software. We, therefore, believe that our Autocorrelation method can detect the LoRa signal accurately and measure the AoA at very low SNR in real-time, being usable for indoor positionning

    Performance Evaluation of the Angle of Arrival of LoRa Signals under Interference

    No full text
    International audienceTracking objects in indoor is always a challenge for a variety of Internet of Things (IoT) applications. Nowadays, many indoor tracking applications use Low-Power Wide-Area Networks (LPWAN) for Machine-to-Machine (M2M) communication. LoRa is a promising LPWAN radio communication technology designed for wide-area coverage and low-power embedded IoT devices. The objective of this paper is to evaluate the performance of the Angle of Arrival (AoA) direction finding approach in an indoor environment. The AoA performance of the LoRa signal is evaluated using different modulation settings, including Channel Bandwidth (BW) and spreading factor (SF). We measure the AoA accuracy of the LoRa signal using an individual Universal Software Radio Peripheral (USRP) B210, Software Defined Radio (SDR) receiver with the help of the GNU radio software development toolkit. In addition, a new approach to measure the AoA of LoRa signal under interference is investigated. We show that by using the Autocorrelation function combined with our direction finding algorithm, the detection and measurement of two simultaneous receptions is possible. The entire experimental setup was implemented in our indoor office environment. Index Terms-Long-Range (LoRa), Low-Power Wide-Area Networks (LPWANs), Software Defined Radio (SDR), Angle of Arrival (AoA)

    Performance Evaluation of the Angle of Arrival of LoRa Signals under Interference

    No full text
    International audienceTracking objects in indoor is always a challenge for a variety of Internet of Things (IoT) applications. Nowadays, many indoor tracking applications use Low-Power Wide-Area Networks (LPWAN) for Machine-to-Machine (M2M) communication. LoRa is a promising LPWAN radio communication technology designed for wide-area coverage and low-power embedded IoT devices. The objective of this paper is to evaluate the performance of the Angle of Arrival (AoA) direction finding approach in an indoor environment. The AoA performance of the LoRa signal is evaluated using different modulation settings, including Channel Bandwidth (BW) and spreading factor (SF). We measure the AoA accuracy of the LoRa signal using an individual Universal Software Radio Peripheral (USRP) B210, Software Defined Radio (SDR) receiver with the help of the GNU radio software development toolkit. In addition, a new approach to measure the AoA of LoRa signal under interference is investigated. We show that by using the Autocorrelation function combined with our direction finding algorithm, the detection and measurement of two simultaneous receptions is possible. The entire experimental setup was implemented in our indoor office environment. Index Terms-Long-Range (LoRa), Low-Power Wide-Area Networks (LPWANs), Software Defined Radio (SDR), Angle of Arrival (AoA)
    corecore