49 research outputs found

    INTEGRATION OF PEACE COMMUNICATION AND CONFLICT RESOLUTION IN EDUCATION SYSTEM: THE CASE OF MYANMAR

    Get PDF
    Education is always the foundation for the development in every country as it is essential for individual sectors such as politics, economics, social and cultural regardless of time and situation. Moreover, education can provide people knowledge, competencies, skills and attitudes that people powerfully engage in the development schemes of their societies. When figuring about education in the society is necessary for the public, peace communication and conflict resolution have been a key role for the diverse cultural communities with multicultural norms and practices to establish effective and sustainable development in education system. Promoting the education about peace and conflict resolution in the system can encourage the peace and stability of the communities and even to the students in their daily lives. The study focuses on integrating peace communication and conflict resolution in the education system and discusses about the direct and indirect approaches to the peace communication and conflict resolution education integration in Myanmar using case study research method presenting descriptive contexts, international examples and background information for in-depth analysis of various perspectives.

    Traffic management with elephant flow detection in software defined networks (SDN)

    Get PDF
    Multipath routing is to distribute the incoming traffic load among available paths between source and destination hosts. Instead of using the single best path, multipath scheme can avoid the congested path. Equal Cost Multi-Path (ECMP) performs the static traffic splitting based on some tuples of the packet headers. The limitation of ECMP does not consider the network parameters such as bandwidth and delay. Unlike the traditional networks, Software-Defined Network (SDN) has many advantages to support dynamic multipath forwarding due to its special characteristics, such as separation of control and data planes, global centralized control, and programmability of network behavior. In this paper, we propose a new architecture design for dynamic multipath-based traffic management approach in the SDN, which comprises of five components: detecting long (elephant) flow, computing shortest paths, estimating end-to-end delay and bandwidth utilization, calculating least cost path and rerouting traffic flow from the ongoing path to the best path. The simulation environment is created through the usage of Mininet emulator and ONOS controller. The evaluation outcomes show that the proposed traffic management method outperforms the ECMP and reactive forwarding method for both TCP and UDP traffic

    Culture Communication: Is an Effective Support for Conflict Resolution and Peace Process in Myanmar?

    Get PDF
    Culture is a system of shared belief and customs in the society. In other way, culture is the symbol of the life of people. Myanmar and its citizen has suffered the trauma of ethnic conflicts throughout the history since 1948. The governments of Myanmar throughout the times have also been finding the solution for conflict resolution and peace process based on the political approach. Now, it is the time for considering about an alternative approach to conflict resolution and peace process based on the culture which is the symbol of the people. The study aims to provide the new interpretation in completing conflict resolution by Myanmar government and a kind of support that can reveal the hidden and being forgotten cultures and identities of ethnic minority groups in Myanmar based on cultural communication. The researcher made two group discussions with ethnic people in two ethnic regions of Myanmar and had in-depth conversation for detailed facts and information. The research mainly presents the impact of culture communication as a better tool for conflict resolution and peace process based on the real voices of ethnic people

    The muscle proteome reflects changes in mitochondrial function, cellular stress and proteolysis after 14 days of unilateral lower limb immobilization in active young men

    Get PDF
    Skeletal muscle unloading due to joint immobilization induces muscle atrophy, which has primarily been attributed to reductions in protein synthesis in humans. However, no study has evaluated the skeletal muscle proteome response to limb immobilization using SWATH proteomic methods. This study characterized the shifts in individual muscle protein abundance and corresponding gene sets after 3 and 14 d of unilateral lower limb immobilization in otherwise healthy young men. Eighteen male participants (25.4 ±5.5 y, 81.2 ±11.6 kg) underwent 14 d of unilateral knee-brace immobilization with dietary provision and following four-weeks of training to standardise acute training history. Participant phenotype was characterized before and after 14 days of immobilization, and muscle biopsies were obtained from the vastus lateralis at baseline (pre-immobilization) and at 3 and 14 d of immobilization for analysis by SWATH-MS and subsequent gene-set enrichment analysis (GSEA). Immobilization reduced vastus group cross sectional area (-9.6 ±4.6%, P <0.0001), immobilized leg lean mass (-3.3 ±3.9%, P = 0.002), unilateral 3-repetition maximum leg press (-15.6 ±9.2%, P <0.0001), and maximal oxygen uptake (-2.9 ±5.2%, P = 0.044). SWATH analyses consistently identified 2281 proteins. Compared to baseline, two and 99 proteins were differentially expressed (FDR <0.05) after 3 and 14 d of immobilization, respectively. After 14 d of immobilization, 322 biological processes were different to baseline (FDR <0.05, P <0.001). Most (77%) biological processes were positively enriched and characterized by cellular stress, targeted proteolysis, and protein-DNA complex modifications. In contrast, mitochondrial organization and energy metabolism were negatively enriched processes. This study is the first to use data independent proteomics and GSEA to show that unilateral lower limb immobilization evokes mitochondrial dysfunction, cellular stress, and proteolysis. Through GSEA and network mapping, we identify 27 hub proteins as potential protein/gene candidates for further exploration

    Prevalence, antimicrobial resistance and genomic comparison of non-typhoidal salmonella isolated from pig farms with different levels of intensification in Yangon Region, Myanmar

    Get PDF
    In Myanmar, where backyard, semi-intensive, and intensive pig (Sus scrofa domesticus) farming coexist, there is limited understanding of the zoonotic risks and antimicrobial resistance (AMR) associated with these farming practices. This study was conducted to investigate the prevalence, AMR and genomic features of Salmonella in pig farms in the Yangon region and the impact of farm intensification to provide evidence to support risk-based future management approaches. Twenty-three farms with different production scales were sampled for two periods with three sampling-visit each. Antimicrobial susceptibility tests and whole-genome sequencing were performed on the isolates. The prevalence of Salmonella was 44.5% in samples collected from backyard farms, followed by intensive (39.5%) and semi-intensive farms (19.5%). The prevalence of multi-drug resistant isolates from intensive farms (45/84, 53.6%) was higher than those from backyard (32/171, 18.7%) and semi-intensive farms (25/161, 15.5%). Among 28 different serovars identified, S. Weltevreden (40; 14.5%), S. Kentucky (38; 13.8%), S. Stanley (35, 12.7%), S. Typhimurium (22; 8.0%) and S. Brancaster (20; 7.3%) were the most prevalent serovars and accounted for 56.3% of the genome sequenced strains. The diversity of Salmonella serovars was highest in semi-intensive and backyard farms (21 and 19 different serovars, respectively). The high prevalence of globally emerging S. Kentucky ST198 was detected on backyard farms. The invasive-infection linked typhoid-toxin gene (cdtB) was found in the backyard farm isolated S. Typhimurium, relatively enriched in virulence and AMR genes, presented an important target for future surveillance. While intensification, in terms of semi-intensive versus backyard production, maybe a mitigator for zoonotic risk through a lower prevalence of Salmonella, intensive production appears to enhance AMR-associated risks. Therefore, it remains crucial to closely monitor the AMR and virulence potential of this pathogen at all scales of production. The results underscored the complex relationship between intensification of animal production and the prevalence, diversity and AMR of Salmonella from pig farms in Myanmar

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized

    Prevalence and seroprevalence of Plasmodium infection in Myanmar reveals highly heterogeneous transmission and a large hidden reservoir of infection.

    Get PDF
    Malaria incidence in Myanmar has significantly reduced over recent years, however, completeness and timeliness of incidence data remain a challenge. The first ever nationwide malaria infection and seroprevalence survey was conducted in Myanmar in 2015 to better understand malaria epidemiology and highlight gaps in Annual Parasite Index (API) data. The survey was a cross-sectional two-stage stratified cluster-randomised household survey conducted from July-October 2015. Blood samples were collected from household members for ultra-sensitive PCR and serology testing for P. falciparum and P. vivax. Data was gathered on demography and a priori risk factors of participants. Data was analysed nationally and within each of four domains defined by API data. Prevalence and seroprevalence of malaria were 0.74% and 16.01% nationwide, respectively. Prevalent infection was primarily asymptomatic P. vivax, while P. falciparum was predominant in serology. There was large heterogeneity between villages and by domain. At the township level, API showed moderate correlation with P. falciparum seroprevalence. Risk factors for infection included socioeconomic status, domain, and household ownership of nets. Three K13 P. falciparum mutants were found in highly prevalent villages. There results highlight high heterogeneity of both P. falciparum and P. vivax transmission between villages, accentuated by a large hidden reservoir of asymptomatic P. vivax infection not captured by incidence data, and representing challenges for malaria elimination. Village-level surveillance and stratification to guide interventions to suit local context and targeting of transmission foci with evidence of drug resistance would aid elimination efforts

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.This work was primarily funded by an EU Horizon 2020 grant “PIGSs” (727966) and a ZELS BBSRC award “Myanmar Pigs Partnership (MPP)” (BB/L018934/1). G.G.R.M., E.L.M., and L.A.W. were supported by a Sir Henry Dale Fellowship to L.A.W. jointly funded by the Wellcome Trust and the Royal Society (109385/Z/15/Z). N.H. was supported by a Challenge grant from the Royal Society (CH16011) and an Isaac Newton Trust Research Grant [17.24(u)]. G.G.R.M. was also supported by a Research Fellowship at Newnham College. S.B. is supported by the Medical Research Council (MR/V032836/1). PIC North America provided part of the funds for the sequencing of the isolates from the USA. A.J.B. and M.M. were funded by Medical Research Council and Biotechnology and Biological Sciences Research Council studentships respectively, and M.M. was co-funded by the Raymond and Beverly Sackler Fund. We would like to acknowledge Susanna Williamson at the APHA for providing samples, Oscar Cabezón for sampling of the wild boar population in Spain, Mark O’Dea for access to sequence data from Australian isolates, the PIGSs and MPP consortiums for providing samples and helpful discussions, Julian Parkhill and John Welch for helpful discussions, and two anonymous reviewers for their valuable suggestions for improving the manuscript. This research was funded in whole or in part by the Wellcome Trust. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission.info:eu-repo/semantics/publishedVersio

    Enhanced thermoelectric materials based on Cu3SbSe3 for room temperature applications

    No full text
    Cu3SbSe3 is a ternary compound that is theorised as a new promising thermoelectric material due to its ultra-low thermal conductivity. Research have been carried out on enhancing thermoelectric performance of Cu3SbSe3 through secondary phase inclusions and different methods of synthesis. However, more investigation is needed for Cu3SbSe3 to be concluded as a high-performance thermoelectric material. Moreover, studies on effects of doping on thermoelectric properties of Cu3SbSe3 have not been widely carried out. Hence, this paper focuses on synthesising pristine Cu3SbSe3 through quenching-annealing and exploring how doping with Ag, Bi, Sn, Pb and Ge dopants on Cu and Sb sites affects thermoelectric performance of Cu3SbSe3. ZEM-3 and Laser Flash Analysis (LFA) were used to carry out thermoelectric measurements. Characterization on morphology was carried out using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The findings showed that addition of dopants decreased electrical conductivity of Cu3SbSe3 and its thermal conductivity. Although low thermal conductivity is desirable for good thermoelectric materials, the reduced electrical conductivity led to an overall decline in Figure of Merit, zT, and Power Factor, PF, which are indicators of thermoelectric performance. Hence, pristine Cu3SbSe3 had the best thermoelectric properties among all the samples despite having higher thermal conductivity than doped samples. Possible causes for these findings and suggestions for future studies will be addressed in this report.Bachelor of Engineering (Materials Engineering
    corecore