406 research outputs found

    Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes

    Get PDF
    The market for plant-based dairy-type products is growing as consumers replace bovine milk in their diet, for medical reasons or as a lifestyle choice. A screening of 17 different commercial plant-based milk substitutes based on different cereals, nuts and legumes was performed, including the evaluation of physicochemical and glycaemic properties. Half of the analysed samples had low or no protein contents (<0.5 %). Only samples based on soya showed considerable high protein contents, matching the value of cow's milk (3.7 %). An in-vitro method was used to predict the glycaemic index. In general, the glycaemic index values ranged from 47 for bovine milk to 64 (almond-based) and up to 100 for rice-based samples. Most of the plant-based milk substitutes were highly unstable with separation rates up to 54.39 %/h. This study demonstrated that nutritional and physicochemical properties of plant-based milk substitutes are strongly dependent on the plant source, processing and fortification. Most products showed low nutritional qualities. Therefore, consumer awareness is important when plant-based milk substitutes are used as an alternative to cow's milk in the diet

    Resistant protein. Forms and functions

    Get PDF
    Several global health risks are related to our dietary lifestyle. As a consequence of the overconsumption of ultra-processed and highly digestible protein (150–200% of the recommended value), excess dietary proteins reach the colon, are hydrolysed to peptides and amino acids by bacterial proteases and fermented to various potentially toxic end products. A diet reformulation strategy with reduced protein content in food products appears to be the most effective approach. A potential approach to this challenge is to reduce food digestibility by introducing resistant protein into the diet that could positively influence human health and gut microbiome functionality. Resistant protein is a dietary constituent not hydrolysed by digestive enzymes or absorbed in the human small intestine. The chemical conformation and the amino acid composition strictly influence its structural stability and resistance to in vivo proteolysis and denaturation. Responding to the important gap in our knowledge regarding the digestibility performance of alternative proteins, we hypothesise that resistant proteins can beneficially alter food functionality via their role in improving metabolic properties and health benefits in human nutrition, similar to fibres and resistant starches. A multidisciplinary investigation of resistant protein will generate tremendous scientific impact for other interlinked societal, economic, technological and health and wellbeing aspects of human life

    Characteristics and properties of fibres suitable for a low FODMAP diet. An overview

    Get PDF
    Background: Irritable bowel syndrome (IBS) is one of the most common gastro-intestinal disorders worldwide and is often treated by adjusting the diet of IBS patients. An increased intake of dietary fibre (DF) and a limitation of the intake of fermentable oligo-, di-,monosaccharides and polyols (FODMAP) are the two dietary adjustments which are frequently recommended for people suffering from IBS. However, one challenge of a diet low in FODMAPs is the limited number of suitable dietary fibres. Scope and approach: The aim of this overview is to identify characteristics and DFs beneficial for IBS patients by comparing the physico-chemical properties of FODMAPs and DFs. Therefore, relevant literature about DFs and FODMAPs was collected and summarised. These characteristics and the associated technological properties were used for a selection of DFs which can be used to develop food products with an increased fibre content and a lower FODMAP content while assuring the product quality expected by the consumer. Key findings and conclusions: A low fermentation rate, low osmotic activity, insolubility and a high viscosity of soluble DFs have been identified as characteristics which are beneficial independent from the type of IBS. Soluble and non-viscous DFs can be beneficial depending on the occurrence of diarrhoea and their state of hydration. This finding highlights the importance of targeting a specific type of IBS. The above mentioned characteristics and the list of suitable DFs provide a good base for the development of functional foods and for future research regarding DF supporting the needs of IBS patients

    Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives

    Get PDF
    Plant-based yogurt alternatives are increasing inmarket value,while dairy yogurt sales are stagnating or even declining. The plant-based yogurt alternatives market is currently dominated by products based on coconut or soy. Coconutbased products especially are often low in protein and high in saturated fat, while soy products raise consumer concerns regarding genetically modified soybeans, and soy allergies are common. Pulses are ideally suited as a base for plant-based yogurt alternatives due to their high protein content and beneficial amino acid composition. This review provides an overview of pulse nutrients, pro-nutritional and anti-nutritional compounds, how their composition can be altered by fermentation, and the chemistry behind pulse protein coagulation by acid or salt denaturation. An extensive market review on plant-based yogurt alternatives provides an overview of the current worldwide market situation. It shows that pulses are ideal base ingredients for yogurt alternatives due to their high protein content, amino acid composition, and gelling behavior when fermented with lactic acid bacteria. Additionally, fermentation can be used to reduce anti-nutrients such as α-galactosides and vicine or trypsin inhibitors, further increasing the nutritional value of pulse-based yogurt alternatives

    A wireless method to obtain the impedance from scattering parameters

    Get PDF
    The coaxial wire method is a common and appreciated choice to assess the beam coupling impedance (BCI) of an accelerator element. Nevertheless, the results obtained from wire measurements could be inaccurate due to the presence of the stretched conductive. The aim of this work is to establish a solid technique to obtain the BCI from electromagnetic simulations, without modifications of the device under test. In this framework, we identified a new relation to get the resistive wall beam coupling impedance of a circular chamber directly from the scattering parameters. Furthermore, a possible generalization of the method to arbitrary cross section geometries has been studied and validated with numerical simulations

    Protective effects of exosomes derived from lyophilized porcine liver against acetaminophen damage on HepG2 cells

    Get PDF
    Background: Recently, extracellular vesicles have come to the fore following their emerging role in cell communication, thanks to their ability to reach cells into the human body without dissipating their cargo, transferring biological active molecules, such as proteins, nucleic acids, lipids, etc. They appear as a promising tool in medicine, because of their capability to modulate cellular response in recipient cells. Moreover, a considerable number of publications suggests that exosome uptake is selective but not specific, and it can cross species and cell-type boundaries. This study aims to explore the potential role of porcine liver derived extracellular vesicles, exosomes in particular, to protect human cells from acute damage induced by acetaminophen. Methods: Extracellular vesicles were isolated from porcine lyophilized liver using polymer-based precipitation and a further enrichment was performed using affinity beads. The effects of obtained fractions, total extracellular vesicles and enriched extracellular vesicles, were assessed on human liver derived HepG2 cells. Cell growth and survival were tested, with MTT and area coverage analysis designed by us, as well as protein expression, with immunofluorescence and Western blot. Oxidative stress in live cells was also measured with fluorogenic probes. Results: After proving that porcine extracellular vesicles did not have a toxic effect on HepG2, quite the contrary total extracellular vesicle fraction improved cell growth, we investigated their protective capability with a preconditioning strategy in APAP-induced damage. EVs displayed not only the ability to strongly modulate cell survival responses, but they also were able to boost cell cycle progression. Conclusions: Extracellular vesicles derived from farm animal food derivatives are able to modulate human hepatic cell metabolism, also improving cell survival in a damaged context

    Финансово-экономический механизм функционирования кредитных союзов в Украине

    Get PDF
    Цель статьи - исследование финансово-экономического механизма функционирования кредитных союзов как альтернативного финансирования населения, что позволяет максимально приблизить финансовые услуги к потребителям, создать надлежащие условия для долгосрочного кредитования с применением современной рыночной инфраструктуры и финансовых инструментов

    Intracrine endorphinergic systems in modulation of myocardial differentiation

    Get PDF
    A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an "intracrine" action, and the orchestrating molecules as "intracrines". Here, we review the intracrine action of dynorphin B, a bioactive end-product of the prodynorphin gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis. The ability of intracrine dynorphin B to prime the transcription of its own coding gene in isolated nuclei is discussed as a feed-forward loop of gene expression amplification and synchronization. We describe the role of hyaluronan mixed esters of butyric and retinoic acids as synthetic intracrines, controlling prodynorphin gene expression, cardiogenesis, and cardiac repair. We also discuss the increase in prodynorphin gene transcription and intracellular dynorphin B afforded by electromagnetic fields in stem cells, as a mechanism of cardiogenic signaling and enhancement in the yield of stem cell-derived cardiomyocytes. We underline the possibility of using the diffusive features of physical energies to modulate intracrinergic systems without the needs of viral vector-mediated gene transfer technologies, and prompt the exploration of this hypothesis in the near future

    Formulation, pilot-scale preparation, physicochemical characterization and digestibility of a lentil protein-based model infant formula powder

    Get PDF
    Background: Infant formula is a human milk substitute for consumption during the first months of life. The protein component of such products is generally of dairy origin. Alternative sources of protein, such as those of plant origin, are of interest due to dairy allergies, intolerances, and ethical and environmental considerations. Lentils have high levels of protein (20–30%) with a good amino acid profile and functional properties. In this study, a model lentil protein-based formula (LF), in powder format, was produced and compared to two commercial plant-based infant formulae (i.e., soy; SF and rice; RF) in terms of physicochemical properties and digestibility. Results: The macronutrient composition was similar between all the samples; however, RF and SF had larger volume-weighted mean particle diameters (D[4,3] of 121–134 ∼m) than LF (31.9 ∼m), which was confirmed using scanning electron and confocal laser microscopy. The larger particle sizes of the commercial powders were attributed to their agglomeration during the drying process. Regarding functional properties, the LF showed higher D[4,3] values (17.8 ∼m) after 18 h reconstitution in water, compared with the SF and RF (5.82 and 4.55 ∼m, respectively), which could be partially attributed to hydrophobic protein–protein interactions. Regarding viscosity at 95 °C and physical stability, LF was more stable than RF. The digestibility analysis showed LF to have similar values (P <0.05) to the standard SF. Conclusion: These results demonstrated that, from the nutritional and physicochemical perspectives, lentil proteins represent a good alternative to other sources of plant proteins (e.g., soy and rice) in infant nutritional products
    corecore