6,903 research outputs found

    Condition for equivalence of q-deformed and anharmonic oscillators

    Get PDF
    The equivalence between the q-deformed harmonic oscillator and a specific anharmonic oscillator model, by which some new insight into the problem of the physical meaning of the parameter q can be attained, are discussed

    Spectral methods for partial differential equations

    Get PDF
    Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized

    Spectral multigrid methods with applications to transonic potential flow

    Get PDF
    Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    The transition prediction toolkit: LST, SIT, PSE, DNS, and LES

    Get PDF
    The e(sup N) method for predicting transition onset is an amplitude ratio criterion that is on the verge of full maturation for three-dimensional, compressible, real gas flows. Many of the components for a more sophisticated, absolute amplitude criterion are now emerging: receptivity theory, secondary instability theory, parabolized stability equations approaches, direct numerical simulation and large-eddy simulation. This paper will provide a description of each of these new theoretical tools and provide indications of their current status

    The complexity of recognizing linear systems with certain integrality properties

    Get PDF
    Let A be a 0 - 1 matrix with precisely two 1's in each column and let 1 be the all-one vector. We show that the problems of deciding whether the linear system Ax ≥ 1,x ≥ 0 (1) defines an integral polyhedron, (2) is totally dual integral (TDI), and (3) box-totally dual integral (box-TDI) are all co-NP-complete, thereby confirming the conjecture on NP-hardness of recognizing TDI systems made by Edmonds and Giles in 1984. © 2007 Springer-Verlag.preprin

    Prediction and analysis of slab quality based on neural network combined with particle swarm optimization (PSO)

    Get PDF
    Based on the study of the mechanism of bloom crack, the main factors affecting the quality of bloom are determined. The intelligent optimization algorithm combining PSO and Back Propagation(BP) neural network is introduced to establish the prediction model based on typical defects. Collect on-site sample data, normalize it, and PSO is used to recalculate the weights and thresholds to accelerate the convergence and improve the accuracy and stability of the results. The experimental results show that the prediction accuracy of the optimized neural network model is high, and it is closer to the actual production of continuous casting
    corecore