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Abstrect

Spectral multigrid methods are demonstrated to be 2 cozpetitive technique
for solving the transonic potential flow equstion; The spectral
discretizatior, the relaxation schere, and the nuitigrid techniques ere
descrfbed in detail. Significant departures from current approaches ars first
illustrated on several linear problems. The princibﬁl applicatione and
examples, however, are for coupressible potential flow. These exauples
include the relatively challenging case of supercritical flow over a lifting

airfoil.
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Interest 1in transonic acrodynanfcs endurés because most commerelal and
military aircraft operate predeminantly in the transonic regine. The design
and analysis of transonic wings and related configurations have been carried
out largely within the framework of the transonic emall perturbation equation
and the full potential equation. Apart from their relative slmplicity the
popularity of thesc flow models 15 due to their adequate representation of
flow features of practical importence. For instance, the pressure rise across
an igentropic shock in these models is sufficiently accurate for normal Mach
nuobers ahead of the ghock lese than 1.3, Naturally, if other design
considerations produce streng  shocks and/or cemplex vortical flcw, then
recourse to the Euler equstions is appropriate. Indeed, Euler solutions to
transonic flcw problems have attracted serious atteation as of late, and they
will surely gain increasing populerity as they becorme more competitive with
potential solutions. Fowever, for many - configurations of enginecriag
interest, potential flow predictions with asymptotically first-order weak
viscous-inviscid interaction give solutions of more than adequate accuracy
{1]. VWhen strong shocks and/or vorticity are of dominant importance in the
flow field, weak viscous-inviscid {ntevactfon 1is no longer an adequate
model. Implenentation of strong interaction models 1s relatively crude at
this time, and until substantial improvements have been made, the potential
fornulatfon will retain the most favorable accuracy-to-cost vatio for a wide
range of practical transonic flow problems.

The main difficulty in the numerical solution of the steady transonic
flow problem has been the mixed elliptic-hyperbolic nature allowing for the
presence of discontinuities. The initial breakthrcugh in overcoming this

difficulty was made only in the early 1970°’s by Murman and Cole [2) who
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introduced a type-dependent difference scheme for solving the trangonic swmall
perturbaticn equaticn. Following this breakthreugh there have been Cany
developments in the computation of transonie flows. The curvey lectures of
Ballhau_s (3] and Jameson [4] present 2 detailed review of thege developments
up to 1976. Since tﬁen ISt regsearch on numerical wcthods for the ataady~
state full potential equation has focusad on accelerating iterative nethoda.
Huch of the progress has been made by relating the relaxation scheme to a
time-dependent differential equation and then using the theory of nurerical
integration of ordinary or partial differential equations to cstimate the
optimal relaxation paraneters. Ballhaus, et al. {51 developed approximate
factorizatieon schemes, AFl and AF2, which, applied to the transonic sgnall
perturbation equation, yielded rapid convergence. The AFl scheme is analogous
to the Douglas-Gunn alternate directicn implicit (ADI) method for the
parabolic equation. The AF2 scheme, which 1ig similarly related . to o]
hyperbolie equation, has Leen extended by Holst to the full potential equation
in conservation form (6] and to three dimensions {71. Another variant of AF?
is  the approximate factorization scheme AF3  developed by Baker [8]
(1ndependently of Holst) or the full potential equation 1in the
nonconservative form. The Success of all these gchemes over the practical
range of transonic flow conditions 1s stiil problem-dependent. Catherall [9]
discusses the basic principle of the approxinate factorization schemes for the
two-dimensional steady potential equation, and describes 1 procedure for
consttﬁcting optimal algorichms. Wong and Hafez [10] propose a preconditioned
conjugate gradient method which s at least twice as fast as pure guccessive-
line overrelaxation (SLOR).  Some other iterative schemes are assessed by
Doria aﬁd South [11]. Another fast method 1s the nmultigrid technique, first

applied by South and Brandt {12] to the transonic snall perturbation equation
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with SLOR as a baecic iterative scheue. Recently, Janeson (13) developed the
multigrid procedure to accelerate convergence of the full petential colution
by an ADI wethod. Despite the existence of quite a few efficient methods of
potential golution, controlled conparigsons are lacking.

The computer time required to obtain nunerical solutiocne for tiwo-

inenaional potential flows is now eo small that there 1is practically no

incentive for developing mnore efficient schemes. Hovever, for three-

L2

dimensional flows exlsting methods are still eo costly that a substantially"

more efficient solution algorithm would have great practical {importance.
Unlike the twe-dimensional case, couwputer storage is a crucial coasideration
in weighing the ecfficiency of a scheme. Peeudoepectral methods have
demonstrated their cepacity for producing equivalent accuracy with far fewer
grid points than standard second-order or even fourth~order methods, not only
for smooth flows but alsc, more receatly, for the Euler equations (l4]. The
first pseudospectral two-dimensional potential flow solutions were obtained by
Streett {151, who established that equivalent solutions were in fact obtained
for potential flows with far fewer grid points than required by stsadard
methods. Hewever, his' solution technique was clearly in nced of acceleration,
particularly for supercritical flows. In this paper we describe an
acceleration technique, based on the spectral multigrid methode developed by
Zang, et al. [16}, [17], that has significantly improved the rate of
convergence of the pseudospectral discretization of thé full potential
equation. In fact, the epectral rmultigrid scheme 18 8o efficient that the
preliminary version described here 1is highly ccmpetitive with the finite

difference scheres.

Since the application of spectral methods to conpressible flows is still

2 fairly novel approach, most resders are likely to be unfamiliar with either



the practical details of apactral methods ot the nuances of numerical methods

‘for compressible flows. Horeover, apectral multigrid methods themselves cre
P p

still in the formative atage. The promising nature of the precent results
wvarrants a reagonably complete and self-containad description of the numerical
rnethod.

We begin b§ deecribing a means of inplenmenting pseudospectral differenti-
aticn, which, although acymptotically incfficlent, 18 ncnetheless prefcrable
for problems on moderately-sized grids. This 1s fcllowed by descriptions 6f
the essential featuscs of spectral multigrid nethods and of the relaxation
schemes. These methcds are then {1lustrated on several linear problems. An
explanation of the potential flow problem and its pseudospectral approximation
ig given next. Finally we report on the performance of the spectral multigrid

method on both subcritical and supercritical potential flous.

IT. Spcetrel Methods Using Iatriz Hultiples

Tﬁe Fast Fourier Transform (FFT) has usually been cited as a key element
in the ecfficiency and hence the implementation of spectral methods. In the
pseudospectral sort of calculétions discrete Fourier methods are commonly used
in the.evaluaC1on of derivatives. However, uuder sone circumstances it 1is
actually faster to use conventional matrix-vector rmultiplications for this
purpose than to resort to transform techniques. An obvious tequirement 'is
that the problem be of mederate size. There are many significant engineering
applications which meet this requirement. The transonic tlow.application,
which is the main thrust of this paper, is one such cxample. Even in circum-—
stances.whlch most favor transform techniques —- on grids with 2F points -~

the matrix-muitiply approach (using nothing but Fortran) has proven
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to be significantly facter then the transform methed (employing asgernbly
language FFT’s). Przcisa comparisons will be given belcw.

In 2 poeudospectral methed the fundamental representation of the solution
is in physical space. The quantities vhich are storcd are the values of the
function wu(x) at special collocation points Xy Derivatives, however, are
evaluated Specirally- Tne valuee of the function are pasgced through a
guitable discrete transform to produce the representation of the functfon in
transform (wevenumber) space. The actual differentiation takes place in
wavenumber sgpace. Ther an inverase transform is applied to yield the
pseudogpectral approzimation to the derivatives of the function at the
collocation points. Let U denote the vector of values of the funcrion at
the collocation points. Then the approximation to the derivative at these

points may be written

ou, (1)

where
o=clpec, , (2)
with C representing the discrete transfornm and D repregenting

differentiation ir wavenumber space.
The most well-known pscudospectral method 1s based upon Fouriler series.

Let the interval of interest be [0,21] and use the collocation points

x, = 2—;'{1 § e 0,1,000 11, (3)
Then 271k M M

e o1 77 km =g -1 )

k] "HuE = 0,1,000 M-l :

L

L R Ak A Al S et it e 4 b e & e e ® e et i = 1e s n



____.__.___,_‘,,_

R

6 ‘ e P
Oﬁ!G‘.'\"lﬁ\L Pr&:a:.‘ ;:;
oF pPOOR QUAL..
M ) Ri
(ik & , ke -Sage, By
il i
i L= —2— yo0, = - 1
Dye .={ -
M
0 -
PRTSIU <N . S
\ * 2°? ) 1
-1 M
(c )jk - . )

The Fourier series differventiation matrix may be conatructed by the matrix
multiplies implied by Eq. (2). Alternatively, one may simply use the explicit
formula given in Eqs. (8) and (9) of [16] for the elements of O.

Once the matrix 0 has been constructed, the cost of evalusating a
derivative by the matrixz vector product OU {s O(HZ). The transform
technique reduces this to O(M £n M). However, two transforms are required
and the constant in the ((M &n M) fac.or is larger than the one in the
O(Hz) case.

Chebychev pseudospactral methods have been the most widely used ones for
non-periodic boundary conditions. The standard interval 1is [~1,1] and the

collocation points are

¥
xj = cos -ﬁl j=0,1,0¢°,N0, (7)
Then
N
ij = —=—— cos —i—"r,k kyd = 0,1,e0¢ N , (])
Hckcj

LA e e s
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vhere .
- 2 J=0or K
:, - { : (9
1 othervise
Hdreover,
2L .
- ( 2 2>kl and £ = kil (mod 2)
1
Do =y ’ a0
(0 otherwise '
vhere
2 3j=0
‘= { (1
1 otharwise
and
() = con 5 - o

An explicit formula is available 1in Eqs. (49) and (50) of [l1€] for this

Chebyshev differentiztion matrix.

IXY. Spectral Multiprid Fendcnentals

Overview of Multipgrid Algorithms

The problems of interest here are scalar partial differential boundary

value problems. The PDE can be written in the general form

L{u) = f, - (13)

where u(x,y) is the unknown function, £(x,y) is sgome source term,
and L is a partial differential operator which might be nonlinear in the

unknown u. The corresponding discretas problem wiil be written
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L(J) = F (14
in obvious notation.

Multigrid solution schemes for Egqe. (14) involve combining relaxation
sveepsv for that equatien with relaxation sweeps for related problems on
coarser grids. Let V denote an approximation to U. The cceential property
for the relaxation scheme 1s that it preferentially damp the high-frequency
components of the error V - U:. Then after & small number of relaxations the
error wili have so little high-frequency content that it can be approximated
well on a coarser grid. Solutions on the coarser grid are relatively
inexpensive to obtain, especially 1if this strategy is applied recursively by
using still coarser grids as needed.

Let us consider just the interplay between two grids. The fine-grid
probiem ig written

LEwh) - rf. | (15)

The shift tc the coarse grid occurs after the fine-grid approximation vt has
been sufficiently smoothed by the relaxation process, {.e., after the high-
frequency content of the error vi - uf hegs been sufficiently reduced. The

related coarse-grid problem is
LE(UC) = ¥, (16)

where
¢« r{Ff - LfovDy) Loy, (17
The restriction operator R 1interpolates a function from the fine grid to the

coarse grid. ‘The coarce-grid operator and solution are denoted by L& and

uc, respectively. After an adequate approximatfon V& to the coarse-grid
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problem has been obtaincd, the finc-grid approximaticn ic corvected via
vE e vf 4 opee® - vfy. (18)

The prolongation onerator P interpolatec a function from the ccarse grid to
the fine grid.

The choice of the ccarse~grid problem 1a based vpon rewriting Eg. (15) as
£ £ £ '
Lfwf) - [F* - Lf(vf)] + L5 vy, (19)

The tern in brackets is the fine-grid recsidual. Sinece it has bzen prescuzed to

be smooth, its coarse-grid epproximation is clearly
r[Ff - Lf(Vf)]. (20)

Equations (16) and (17) then follow by replacing the remaining fine-grid
quantities with appropriate coarse~grid ones.

The quantity

v® = v - gyt (1)
is the coarse-grid correction. Equations (16) to (18) are equivalent to

LE@vE + 0% - LS@RyE) o §C (22)

vE o vf & rz°<, (23)

where 2¢ {s the approxtmation to WC. For linear problems Eq. (22) reduces
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to
LW© & S, (24)
This overview has, of course, been bssed upenn the peper by Brandt [18),
o albeit in notatfon popularized by Hackbuzech [16]. The particular choices of

the interpola;ion and coarse-grid operators used in the present spectral
multigrid work are described in the follovwing sub-sectlons. This descripﬁinn
1s given for one~dimensicnal problems. The extension to higher dimensions {s
obvious. These details are followed by a discuscion of the relazation

schenes.

Interpolation Operators

The spectral multigrid {nterpolation operators vhich were proposed in
[1€] for periodic coordinates amount to trigonometric interpolation: given a
function on a coarse grid (with M, points), computc the discrete Fourier

coefficients and then use the resulting discrete Fourier serles to construct

e

the iﬁterpqlated function on the fine grid (with M points). This may be
accomplished by performing two FFT’s. An explicit representation of *he

prolongation operatdr is

- H
c
—_ -1
iy 2rin(d - X
1 E £ [
P T e ’ (25)
; Ik M i |
: T - — 1
; L 5+ !
t which sums to yield
' Logl k.
‘ PJk M S(Mf Mc)’ (26)

SN where

s
'
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£(r) = l . 2n
sin(ﬂrl‘fc)cot{!tr) - coz(ﬂrl\ic) othervige

The correspondine restriction operator ig easentially the adjoint ¢. thio:
p > P J J

L .4k .
e Lo J k. ~3
ik I3 °(=\1c i.f) 8

Interpolation for non-periodic coordinates employs Chebychev perfes i- an

analogous fashion. The prolongation operator ig

N
c
2 A S 244 .
P, = -~= c, 1 cos =-1 cos LK , (2,
=y 2 N, N
ke gmC ¢
where ;k 1s detined by Eq. (9} with N = N.. This sums ta
2 .,
Py = = [a(d- - £) 4+ (& 4 B, (30)
ik = N N N N
c, N f c f c
ke
where
N
c
5 r integer
Qr) = . I - ()
1/4-1/4cos(1rrnc) +1/2cos(2—-(r1c-<-l))sin(l2 )csc(-z—) o:herwise'
We will have occasion to use twvo distinct restriction operatorz. ne 1is

sometimes used in forming the coarse~-grid operator and is obtained bv applying

Chebyshev restriction in the obvious fashion. It will ke denored bv k(?)

and 1t is given by

(32)

-5 - -

i1
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vhere ¢, 13 defined by Eq. (9) with N = Wy and

NC
Y, + Y r Integer
a(r) = | erll_ . (33)
UZ*'U}CO”(-(N Tl))aln( )cac( l.) otheruise

The other 1s used for interpolation, is denoted by R(i), and 1is defined by

the adjoint requirement:

;;) _: [Q( f) Q(L+—)] (34)

N
ckc f

T

vhere Zk 1s defined by Eq. (9) with I = N,

Coarse-Grid Operator

A typical term in the class of problems considered here iz

[a(u x) du]

(35)

The discrete operator which represents 1ts fine-grid psecudospectral
approximation is .

Lf =040, (36)

where O 18 givan by Eqs. (2) and A s the diagonal wmatrix

Ajk = a( )6

uj,xj IR (37)
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Hany nultigrid investigators, e.g., [12], [20), and [21], have advocated

choosing the coarse-grid operator co thst

LS = rLEp. (35)
Both the Fourier and the Chebyshev first-derivative operators, defined by Eqs.
(2) - (12), satisfy

0¢ = rofp, (39)

where R = R(°) is chosen in the Chebyshev case. However, Fq. (38) 1itself ig
not satisfied if the coarse-grid analog of Eq. (36) is used to define LS,
except in the trivial case for which &a(u,x) 15 a constant. On the other
hand, much of the efficlency of the pseudospectral method is lost if Eq. (38)
is used to define the coarse-grid operater. Some compromises were suggested
in [17]. The most satisfactory one seems %o be using Eq. (35) but with the
restricted values of a(uj,xj) in place of the pointwise’lvalues. The

Chebyshev restrictions should be performed with R(o).

Boundary Conditions

In the applications that follow, threc types of boundary conditions
appear: periodic, Dirichlet, and Neumann. Periodic boundary conditions are
automatically satisfied by the use of Fourier series. ¥ully-periodic prcblens
contain gome subtleties that are discussed in [17]).

Dirichlet boundary conditiong are handled effortlessly. The vector of
unknowns should 1include the values at the boundary poinis in their natural
locatfons. (This has the side effect of facilitating the programming of the

Chebyshev interpolation.) On the fine grid the desired boundary values are

13
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inserted d{nto the appropriate locations and thegse values &re not oodified
during tho relaxation. On the coarcer grids the appropriate boundary vclues
are the ones which fzall out‘of the reatrictior process.

Meumann boundary conditions are z bit touchier. We have enforced them by
incorporatingz the Neumann boundary condition into the discrete operstor.
Suppose that there is a Weumann boundary condition at x = -l. In the
evaluation of a term such as appears in Eq. (35), the first stage 1is the
computation of du/ax at all the collocation pointe. In general this value
will not match the desired boundary value. The boundary condition is enforced
by resetting the valve of du/dx at = = ~1 to the desired value before
proceeding with the nultiplication by a(u,x) and then the final

differentiation.  This produces the desired boundary condition in the

converged solution. This approach has the advantage of ensuring that the

boundary condition appears in the discrete operatcr with a consistent scaling.’

A much less effective alternative is to replace the differential equation at
x = -1 with the condition that du/dx 4is the prescribed toundary value; The
disadvantage of this approach is that this boundary equation iz far out ol
scale with the rest of the Opérater. This alternative has in fact bee: tried
on some of our test problems and 1t has resulted 1in a substantiai

deterioration of the convergence rate.

YV. Relexatioa Schemes
The crucial property that a relaxation scheme should possess for use in a
multigrid algorithm is that it damp effectively the high-frequency components
of the errcr. It nced not be especlally effective in the low-frequency range,

so long as it deces not amplify any corponents. For spectral rultigrid methods
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an additional requirement arises from the globe 1 netvre of the approzimation:
the fast evaluation of derivatives demands thal the relnzation be simultancous
rather than successive, €.8+, Jacodbi’s method can be iopiexernited efficientiy,
whereas-Gauss-Seidel’s cannot.

A class of iterative schemes that meets thege requiremehts is based upon
approximate faétorization techniques [5). These mnethode are eapeciaily
attractive because they have been emploved in come of the most successful
finite difference solutions to the dolicate transonic potential flow problen
[71, [13). Ybreover, the latter work demonstrated their effectiveness in the
multigrid context, albeit for 2 purely finite difference approximation. A
reviev of the computational transonics literature suggests that thc rosat
fruitful interpretation of approximate factorization schemes for this misxed
elliptic~hyperbolie problem 1s in terms of their correspondi ing tirme-dependent
partial differential equation. This ie the approach that will be taken below.

An alternative and perhaps more traditional interpretation for linesa:,

elliptic problems 1is in terms of precond{tioning. The relaxation schere

proposed in {17] for a spectral multigrid method for such problems was
interpreted as an incomplete LU decomposition serving as a preconditioning_fot
Richardson’s itgration. A brief description of this scheme 1s included here
since it will serve as a comparison for the approximate factorization method

on one of the linear test problens.

Richardson Tteration with Incomplete LU Decomposition

A preconditioned Richardson iteratton for solving Fq. (14) can be
expressed as

Ve Vva+oewr [F - LV, (40)

15
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where H 18 the preconditioning ratrix and © 1o the velarxation parzmeter.
The matrix H should be chosen sc that it is an approximate inverse to L,
but is easlly invertible. The version recommended 1n [17] for linear problems
is obtained by first constructing the ﬁatrix Hpp which represents a standard
second-order finite difference spproximstion to L  (see Eq. (12)) and then
perforning an incomplete LU decouposition of Fppe Detaile are provided in
{17] along with a prescription for choosing the relaxation parameter ® go

that the high-frequency error components are damped preferentially.

Approximate Factorization

For this discussion it 1is counvenient to rewrite Eq. (14) as

M(U) = 0, (41)

where of course,

M(U) = L(U) -~ F. | (42)

Next, view U not as the solution to Eq. (41), but rather as the steady-state
solution to the evolution equation

N .

T M(U). (43)
This {is surely sensible 1if L(u) 1s eiliptic for then Eq. (43) represents
the spatial discretization of a paraboliec probdlem. Semi-implicit time-
stepping procedures are desirable for such problems because of the sgevere
explicit time-step limitations. (This {is cspecially arnute for pseudogpectral
discretizations employing Chebyshev series because of the very small spacing

between the collocaticn points near the boundary.) The gimplest practical



H
'
’

b

iy

N e s ey

CRigliiaL Proz

Ol [SH]
| =4 ™ »
time digeretization of Eq. (43) is OF POCR QUALITY
(n+l) (n)
U At- U - M(U(n)) + J(U(n))<u(n+1) - U(")),

vhere

1w = W,

and a superscript refers to & time level. Let

1
Q= At
and

™ L (et (m)

and then rewrite Eq. (44) as
[a1 - J(U(n))]AU(n) o M(U(n)),

where I denotes the identity matrix.

This motivates the relaxation scheme

V€V 4+ v,

where AV 15 the solution to

[al = J(V)]AV = MV).

!

In many cases the Jacobilan J(V) can be split in

Jx(V) and Jy(V), each involving derfvative

(66)

(45)

(46)

(47)

(48)

(49)

(50)

to the sum cof two operaters

s in only the one cocrdinate
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directicn {ndicated by the subacript. Approxinate factorization wmothods
encompass various approzimations to the lefi~hand gide of Fq. (48). ‘'The rmont

st;aightforward of these is
el - J (V)] eI - I NV = ai(v), (51)

in combination with Eq. (49). This 13 Just the Douglas-Gunn version of ADI
[22]. It is commenly referred to as AFl for the transcnic problem {5). For
second-order spatial discretizations the term [aX - Jx(V)] leads to a set of
tridlagonal systems, one for each value of ye The second left-hand side
factor produces another set of tridiagonal systens. For pseudospectral
discretizations, however, these systema are full; hence, Eq. (51) 13 ctiil
relatively expensive to invert. A compromise analogous to the cne invoked in
the incomplete LU decomposition preconditioning ie to replace J and 'J

x y
with their second-order finite difference analogs, denoted by H, and K

~.
v 9
’

respectively:
[al - Hx(V)][aI -~ Hy(V)]AV = aHl(V). (52)

The‘approximate factorization scheme consists of Eqs. (49) and (52). For
purely finite difference approximations some analytical results are availablé
for selecting optimal values for the paramaters a and & {9). No similar
results are yet available for the present application. By analogy with the
finite difference case we have chosen ® to be of order unity and have

selected a scquence of a’s in a range [Gl’ah] by the rule

a k~-i
2 K~1
h(a—)

k
a w o

(3

’ QRIGINAL z‘w.\i":fff-‘ (53)
b OF POOR QUALIT
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where K denotes the nﬁﬁber cf distinct a’s. The choices of a, and e,
vere based in part on estimates of the eigenvalue range of the discrete
operaters and in (zuch greater) part by *trisl and error. Fertunately, the AFl
echene 18 not very sencitive to thesge pa?émet;ta.

For cingle-grid solutions to the pubcritical pctenticl flow problem the

pseudospectral AFl acheme based on Eg. (43) hze prover satisfectory [15).

Extencive work on finite difference methode for oupercritical poteatial flovw

T AT me a4l L sim i et e e e e
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has indiccted the necessity to bage their approzizate factorization schemes on

2
Y
gae ~ MO, 34)

where g 18 g physical variable directed along the streamline. One aschene
vhich wodels this behavior io referred to as AF2 [5]. A pseudospectral AF2
varlant 1s described in (15]. Since cschemes of the AF2 type model hyperbolic
equations they are relatively {ineffective ac damping high-frequency error
components. Indeed, in the peeuvdospectral single-grid implexrentations [15)
for gupercritical flow, an iterative strategy involving both AF2 and AFl vas
found to be more effective than AF2 alone. (By {itself, of course, AFl was

divergent.) This will be referred to below as the AF2/AF1 scheme.

V. Tarzerical Results for Linear Problezs
We chose a series of test problems to bridge the gap betveen the spectral
multigrid methods described in (17} and those required feor the potential flow
problem. The first atep was to change the relaxation echeﬁe from
preconditioned Richardson iteration to adpproxicate factorization. The

boundary conditions were ieft as Dirichlet in both coordinate directions. The
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next phace icvolved chifting te periedic bourndary coaditions 4 one
direection. In the finmel stage the gecaotry was altered fyos a rectsangle to an
annuiuvs with en icner radisl Dboundary condition of Neumean rwathoer then
Dirichlet typs. This last pfoﬁlcﬁ is about ac closce as one con ceze ¢o the
potentisl flow problem within the ceastraint of linearicy.

The nultigrid codes uced a maximwe of 4 levels. These arc labelled by
the index &, where &k = 2, 3, &4, or 5. The grid cn level k conteins
either ézk (Fourfer) or 2F 21 (Chebyshev) collocation points in a coordinate
direction (including boundary points). ‘Two diffecrent schodules were used;
they were referred to as schedules B and D 4n {17]. For schedule B the
problem was first golved on level 2; then that soluticr was interpolated tc
level 3 as the initial puess for o multigrid iteration involving levels 2 and
3; then the couverged lcvel 3 solution was {nterpolated to level &4 ae its
initial guess, and eo on until level 5. Tor schedule D the multigrid proceess
simply began on level 5. 1In both cases the initisl gurss consisted of randem
nunbers chogen from (0,1), eansuring that all error componénts were present
initially. Both schedules were run 4n & fixed mede with 6 relaxationa (2
pascses tlhirough a 3 parsmeter sequence) before restriction to & coarser grid.
A coarse-grid solution wac deemed acceptable for prolengation to a fine-grid
whenever its RMS residual dropped below 0.1% of the last residual on the finer
grid. All of these linear runa empleyed the correction scheme, i.e., Eq. (24)
rather than Eq. (16) was solved on the coarser 1levels. The wvariable
coefficients and the right-tund sides for the coarse-grid problems were
filtered in the wmanner deccribed 4n [17).

The specific meansure used was the equivalent smcothing rate. In sorme
preliminary celculationz the sverage time T, required for a cingle fine-zrid

0

relaxation was determined. For an actval nmultigrid caleculatilon let ry and
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r, be the RMS reciduals after the first end last fine-grid relerations,

respectively and let T be the total cpy tize. Then the equivealent caoothing

rate was teken as

1

T
. T ~ 1

r .
B 5

Rectangular Chebyahev - Chebyshev Problem

The problem class 18 the same ore exaxained in {17):

9 ) 3 3
e 5 toyle gyl = 5, 56

on (-1,1) x (-1,1) «with Dirichlet boundary conditions with

co8 m T (x+y)
a(x,y) =1 + ¢ e a s (57)

and f(x,y) and the boundary data chosen so that the solution ig

culx,y) = sin(muﬂx + n/4) sin(muﬂy + n/4), (58)

The properties of thrae test cases are listed in Table I. The parameters used

in the epproximate factorization schcme are given in Table II.

The performance of the preconditioned Richardson (PR) end the approximste

factorizat_ion (AF) mcthods 1s shown in Table III. The PR method 18 £%ou:
twice as fast as AF on these problems. But recall that *he PR scheme hrs been

highly . tuned (especially for probiem 1}, whercas the AF schene wag subjected

21
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to only 2 cmall emcunt of trial and error tuninz. No doubt the AF schena

would benefit greatly from nmore experimentation, not to mention analysic. We

have been content with establishing 1ts workability in thig nultigrid context.

When derivative evaluatione are erformed via FFT’s, the tipe required on
p

a CIC Cyber-175 for a single level S r

evaluation and factorization stages) 1s 0.248 sec. for PR and 0,

elaxation (including both the residual

238 gec. for

AF.  Only abcut 5% of the toctal time in these calculations wag spent inter-

polating between levelas. oOn average there were 4 to § relaxations for every
interpolation. A comparison between the transform gad nztrix-multiply rathodg

of differentiation is provided in Table 1V. Only on level 5 (a 33 x 33 grid)

does one gain by using FFT’g. Furthermore, since most of the work takes pince

on levels 2 to 4, the total runaing time g less (by 10 - 20%) for the natrix-

multiply versions.

-

Bear in mind that asgembly language FFT’s werse performad

on grids ideal for the FFT (powers of 2). The matrix rultiplies were coded in

Fortran. 1In the potential flow applicatien it 1s advantageous to work on nore

general ;rids. Thus the matrix-multiply alternative ig highly competitive.

Its advantage ought to extend to even larger grids on vector processors.

Table I. Characteristics of the Rectangular

Chcbychev-Chebyshcv Teot Problenms

Problem No. €

mll ma
1 0.00 1 1
2 0.20 2 2
3 1.00 5 5
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Table II. Pavazeters of Cha A% Schemz for the

Bzetaesular Cacbychov~Chebyskev Problcmg

Level | Gy qh w
2 6 | Y2
-3 3 75 1.2
4 80 1000 i.1
5 600 8000 1.0

Table ITI. Equivalent Szzsthing Dotes on tha

Rectanguler Chebyshev-Chcbysher Prebless

Problenm lo. - FR AF
1 «26 43
2 .58 78
3 .78 «92

Teble IV. Residual Evaluation Tize for the AP Sctheme on tho

Rectangular Chebyshev-Chcbyshev Test Problezs

Level Transform Method A Matrix-Multiply
Differentiation Mfferentiation

3 .0204 .0083
0622 .0390

5 <214 248
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Rectangular Chebyshev~Fourier Problen

This problem is also described by Lq. (56), but on (-1,1) x (0,27) and

with Dirichilet boundary conditions {n x and perlodicity in Ve The

coefficient

cos ma(ﬂx+y) .
a{x,y) =1 + € e (5%)

and the rest of the problem fits the solution

u(x,y) = sin(muﬂx + m/4) sin(nhn cos y + n/L)., (60)

The properties of three test cases are listed ip Table V end the AF parameters

are supplied in Table VI.

Table VII gives the results. There {is evidently nothing to be gainéd

here by working up to the finest level by first solving the coarser level

problems. The present corbination of the coarse-grid operator and the AF

parameters would not permit z solution to be obtained for a highly oscillatory

problem such as the previous sub-section’s problen 3, Note that the

equivaleant smoothing rates on the present problems 2 and 3 are comparable to

those for fhe previous problem 2.

Table V. Characteristica of the Rectangular

Chebyshev-Fourier Tegt Problers

Problem No. € m, m,
1 0.00 1 1
2 0.10 1 1

3 0.20 2 2
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Table VI. Parcmeters of the AP Scheme for the

Eectengular Chebyshev-Fourier I'rcblecs

Level al o}‘ w
2 0.5 6 1.0
3 2.0 75 1.0
4 10.0 1000 1.0
5 100.0 8000 1.0

%¥able VIiI. Equivalent Szootling Rates on the

Rectangular Cticbyshev-Fourier Problems

Problem No. AF/B AF/D
77 .75

2 .78 .79

.82 ‘ .76

Annular Chebyvshev-Fourier Problem

The differential equation for this last linear example is

dup L 3o (Lay - (61)

on (1,5) x (0,27) with

cos(m"(r-l-e))
a(r,80) =1 + € e ! ' (62)
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u(r,8) = ccs(nuﬂr) sin(muﬂ cosﬁ + u/b). (63)

. The radial bioundary coaditions are Dirichlet at r =35 ‘but teumann at r s 1.

Perivdicity in eziruth ie enforced. Tables VIII and IX present the test case
and AF paraﬂete rs, respectively.

The results ore available in Table X. These are the least impr@ssive
snoothing rates of the linear test problems. Neumann boundary conditions are
ugsually more troubiesome than Dirichtlet ones. The global approximaticn

urderlying the spectral methods makes them especially difficult to enforce.

Table VIII. Caaracteristics of the Annular
Chebyshev-Fourier Test Problezs

Problem No. a m, m,
. 0.00 1 1
“ 0.10 1 1
3 0.20 2 2

Table IX. Paramoters of the AF Scheme for the
Annular Chebyshev-Fourier Problers

Level a, a ©
2 5 40 2.0
3 10 600 1.4
4 100 6000 1.0
5 1000 10000 1.0
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cble Z. Cyuivalent Szcothing Bates on the

Annalar CGiebyshev-Fouricr Problens

Problen No. AF/B AT/D
1 <82 <87
2 .81 «87
3 .87 .86

VI. Potentizl Flow Past an Mrfoil
The problem considered is thaf of compressible potential flow past a two-
dimensional airfoil. We model this with the full potential equation, applying
boundary conditions at the actual airfoil surface. In this work a numerically
generated conférmal mapping [23} is used to transform-the-airfoil onto the
unit circle. The form of the transformation betwaen the coaplex physical

plane (the z-plane) and the complex computational plane (the o-plane) is
N
) (A_+D )o“ n)

3
(I+ =)
dz n =1 ,
G = (1-0) " , (64)
where the coefficients A, and B, are generated numerically so that the

known relations between the surface tangent angles and arc lengths of the
airfoil shape are satisfied. The tralling edge of the airfoll is located at

9 =1 {in the computational plane. The Schwarz-Christoffel factor in the
transformation allows the smooth mapping of a finite-angle trailing edge. For
further details on this particular mapping see Jameson [23). The {nner

portion of a 16 x 48 grid s shown in Figure 1.

27
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In the couwputational plane, with ¢ = Reie, the potential equation
; beccues
! 2 (pe 2y 4 2 (p 26
: o8 (% 3 +55(R e) = O : (65)
< where ¢ 1g the velocity potential and p 1is the density, given by the
igentropic relation
i
Y=1 .2 2 2 Y-1
p=[1-=M (. +q5-D] (66)
the ratio cf specific heats is deroted by Y, the Mach number at infinity is
denoted by M_, and the velocity components in the physical (r,0) plane are
128
: &®"HEm (67)
: 13
. 98 " RH 30’ (68)
with
dz
H = do}. (69)
The boundary conditions at the surface and in the farfield are
-
3o
3R " 0 at R =1 (70)
@ +Rcog O+ E tan_l[v'l -MZ', tan O] a8 R+ =, (71)

The first term in the farfield boundary condition describes the uniform
freestrcam flow. The remaining term {is the first-order 1ifting term; 1t is

derived in [24]. The quantity E  ia known as the circulation. it 1is
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deterzined Ly the Kutta condition, vhich states that tho phyaical velocity at

the trailing edge muct be finite. Since H = 0 at the trailing edge, the

Rutta condition reduces to

% 0 at o= 1, (72)
The singularity of the potential 4In the farfield poses difficulties

(especizlly for spectral methods) that are best handled oy computing in terms

of the reduced potential G, which {s defined by
G=0¢- (R+%) cos 6 - & tan”}[/] - M2 tan 0] (73)

and is assumed to be periodic in O, It follows that G satisfies

) a6 3 rp 3G )

SRLRP 57) + 350z 35) = 0, (74)
along with

3G

®R- 0 at R =1 . (75)

G+ 0 as R + o (76)

and the Kutta condition.

 The spectral method employs a TFouriler series representation in O.
Constant grid spacing in O corresponds to a convenient dense'spacing in the
physical plane at the leading and trailing edges. The domain in R (with a
1arge; but finite outer cutoff) 1s mapped onto the standard Chebyshev domain
[~1,1] by an analytical stretching  trancformation  that clusters the

collocation points near the airfoil surfzace. The stretching {s so severe that
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the ratic of the largest-to-gnallest radial iatervels iz over 1000 for the
g8rid whose imner portion is illustrated 1in Figure 1. The trancformation igp
incorporated into the operator which ~epresents differentiatifon in the R

direction.

Despite 1its nonlinearity the pc#cntial flew prollem remains fairly
straightforward‘ €o long as the flow {g everyvhere subsonic. The real
difficulty of the problen arises when the flow forms s supersonic bubble on
the airfoil. The potential cquation is then of nixed elliptic-hyperbolic type
and admits weak solutions with discontinuities. Both compression and
expansion shocks will appear unless an artificial viscosity with a directiongl
bias is introduced into the equation ip the svpersonic region. The most

expedient technique for dealing with thig i5 to use the artificial density

approach of Hafez, et al, [25]. The original artificial deneity 1s

* .
D=p-pidop (77
with
¥ = max{0,1 - 13}, , » - (78)

M

where M 1s the 1local Mach nurber and Ep is an upwind first-order
(undivided) difference. 1In the present work a higher-order artificial density
formula related to a form developed by Jameson {13] has been employed.

The first Pseudospectral solutiong to the compresgible potential flow
problem were obtained by Streett [15}, [26] using a single-grid version of the
approximate factorization iterative scheme described in the fourth gection.
For subcritical flows this method was already highly coupetitive with state-
of-the~art finite difference methods. For supereritical flows, however, the

single-grid pseudospectral scheme was quite inefficient, even with the use of
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the AF2 extension of the approximate feactorization schene. This probtlem,
then, poses a useful application of the spactral multigrid approach and, os

the regults indicate, 2 dramatic demonstration of its effectivencos.

Vil. Resulis for Toteutial Tluw Past ca Adrfoil

The numerical ezamples of this section have been chosen primarily to
illustrate the effectiveress of the mnultigrid s&pproximate factorizstion
(MG/AF) soluticn scheme in comparison with the earlier single-grid approxinate
factorization (SG/AF) method [15) for solving the gpectral equations for
potential flow. A secondary issue i{s the comparative quality of this gspectral
discretization and of widely-used finite difference approximations. A by-
product of these examples 1s some practical guidelines for the wmultigrid
algorithms.

Threc test problems suffice for a comprchensive treatment of the spectral
multigrid efficiency and spectral discretization accuracy 1ssues: a
subcrizical 1lifting airfoil, a supercritical nonlifting airfoil, and a
supercritical 11fting airfoil. These have been listed in order of increasing
difficulty. Detailed comparison of the spectral SG/AF and MG/AF schemes will
be provided for the first two examples. Extensive comparisons are also made
for all three problems between the spectral MG/AF scheme and two popular
finite difference codes: TAIR [7], a single-grid/AT2 method and FLO36 [13], a
multigrid/AF method.

Some of the relevant 1issues have already been discussed in [15). The
most censitive matter is surely the welghing of the efficiency of two schenmes
(spectral and finite difference) with different occuracy and convergence
properties. The rcader is directed to [15] for 2 more detailed discussion

than i3 provided here.
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Three different grids have been uséd (ﬁith the cocrser 1levels in
parentheses): 16 » 32 (12 x 16 and 8 x 8), 16 x 48 (14 x 32, 12 x 16 end
8 ; 8) and 18 x 64 (16 = 48, 14 x 32, 12 % 16 and 8 x 8). Tote that in
péssing to a coarser level the grid is typically reduced by iess than a factor
of 2 in each ;coordinate direction. Thig cholce leads to a significant
improvement ovér the standard gridding for the spectral potential fiow
problen, especially in the supercritical regime where the solution has large
high-frequency content.

This problem has the added complication of a highly-stretched grid in the
radial direction. This 18 accounted for by changing the spectral

differentiation matrices from C-lpe (see Eq. (2)) to
o = sc-Ipc, (79)

where B is a diagonal matrixz which contains the Jacobian of the
transfornétion. A substantial improvement in the spectral multigrid algotithm
results from defining the coarse-grid differentiation matrices directly by Es
(39) rather than by the coarse-grid version of Eq. (79). 1In the absence of
stretching these two definitions are equivalent. Equation (39) is easi1y and
efficiently implemented with matrix-multiply techniques.

Virtually all the spectral multigrid results included here were obta;ncﬁ
with the same fixed schedule: start on the finest grid, work down to the
coarsest grid and then back up to the finest grid; on the way down .there 1g 1
sweep though the (three) parameter sequence and on the way up there are 2

sweeps.
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Suberitical Lifting Airfoil

The flow past an NACA 0012 alrfoil at 4° angle of attack and a freestrecm
Mach nucber of 0.5 will serve as the first test case. The airfoil produces a
fairly large 1ift cocfficient at these conditions and the surface pressure

<

distribution shows a sharp suction peak near the leading edge. Since the

-

local Mach number 4in this peak 1s nearly 1, coaprecsibility effects are
substantial.
in order to demonstrate that the spectral solution on a reletively caarse

grid captures all the essential details of the flow we first compare it with
an extremely accurate finitc difference resulte Tn Figure 2 1s chown the
surface pressure coefficient from a epectral solution using 16 points in the
radial (R) direction, and 32 points 1in the azimuthal (0) directfon; the
symbols denote the solution at the collocation points. For comparison, the
result from the finitec difference code FLO36 is shown as a solid line. The
grid used in the benchnark finite difference calculation is g0 fine (64 x 384
points) tnat the truncation error 1is well below plotting accuracy. The
spectral calculaticn seems to lack detail near the leading edge sguction
peak. . However, since the spectral solutifon {s actually a continuous
representation of the solution, 1t may be expanded in terms of its basis
functions onto a much finer mesh. Such an expansion, shown in Figure 3,
reveals the hidden detail of the solution. The FLO36 and expanded upectral.
results are identical to plotting accuracy. The spectrzl computation on this
mesh yields a 11ft coefficient with truncation error less than 10~%, Spectral
solutions on a 16 x 32 grid are thus of more than adequate resolution and
accuracy for subecritical flows.

“The convergence histories for both the S$G/AF and the MG/AF spectral

schemes on this test case are displayed in Figures 4 and 5. The convergence
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histories have becn supplied for toth the maxipum residusl (Figure 4) and the

error im circulation (Figure 3)¢ They are plotted against machine time on a

CDC Cyber~175 coumputer. Although the multigrid cede (henceforth referred to

as "MGAFSP") ghows a substantial improvement over tha single-grid approximate

factorization code ("AFSP") 1in maxnimun residual convergence, the gain is even

wore dramatic from the iife convergence stsndpoint. Tnic 18 understendable

since the lift ig predominantly ¢ low-frequency property of the solution. The

single-grid spectral approximate factorization gchene was recognized to be

weak in damping for long~wavelength error components [15],

The consensus in the computational transonics community appears to be

that TAIR 1{g the fastest widely-available finite difference code. A

ccmparison of maximum resfdual versus machine time for TAIR and MGAFSF on the

suberitical test case 1s shown in Tigure 6. ‘The two codes require nearly

equivalent machine time with TAIR showing a better agymptotic convergence

rate.  However, the TAIR result was produced on a rather coarse (default)

finite difference mesk of 30 x 14S points. Compared with the surface pressure

results from MGAFSP and FLO36, the TAIR result is significantly in error near

the leading edge (Figure 7). This 1s indeced truncation error, because TAIR

results on a 60 X 297 mesh are more in agreement with those of MGAFSP and

FLO26. A further indication of the somewhat large truncation error of the

TAIR result {s that the predicted drag and 11ft coefficients are correct to

only twe decimal places (suberitical potential flow yields identically zero

dtﬂg) .

In Figure 8 are shown convergence historics from TAIR, FLO36, and MGAFSP

on meshes which yield approximately equivalent accuracy; the surface pressure

results are the same to plotting accuracy, the 1ift ccefficient is converged

in the third decimal rlace, and the predicted drag coefficlent is lese than
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001, (Actually, the agpcetral result Lo an order of mpgnitude more acerurate
than these limits, but the TAIR result barely mects them.) As can be seen
from F;gure'é, tha gingle-grid ATSP recult would fall ia the vicinity of the
FLO36 and TAIR results in the present figure.

Use of nmore than three grids in the epectral multigrid code did rnot yield
an improvement in effective convergence, since the interpolation coverhead
becare a greater proporticn of the total work. It would have been deairabie
to uée a lcwest grid coarser than 8 x 8 in the multigrid eycle.
Unfortunately, due to the presence of the metric singularity at the trailing
edge, coarser mesh results were so oscillatory as to provide no uceful long-

wavelength information.

Supercritical Yonlifting Airfoil

The test is againAthe NACA 0012 but at M, = 0.8 and with zero angle of
attack, 1.e., a nonliftipg cendition. The surface pressure coefficient
distfibution as computed by the spectral' methed on an 18 x 64 grid {is
displayed in Figure G. The shock at mid-chord 1is relatively strong; the
normal Mach number shead of the shock is approximately 1.25. The shock is
spread over several mesh spaces by the finite difference artificial viscosity
used in the spectral calculation. Although this shock is already far sharper
thaﬁ those produced by finite difference codes on a comparable grid, it ought
to be possible to capture the shock in a still smaller region with a épectral
method employing an artificial viscosity more suited to .the spectral
discretization.

Tﬁe'co;vergence histories for the S5G/AF scheme (combining AF2 and AFl)
and the MG/AF schemc {using AFl alone) on 2 fine gr!d are sghown in Figure

10. The rultigrid scheme obviously shows a much hipher zsymptotie convergence
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rate. FNote that the single-grid schems initially oscillates with the maxinum
residual of order unity for a rather lengthy perfcd. This 15 indicative of
the lack of high-frequency danping in thz AF2 gcheme. The flouficld is being
established in this period by the AF2 acheze; the plot of the history of the
number of superscnic points In Figure 11 shows that the AFZ gcheme establishes
the sghock poaiéicn ard the size of supersonic region nearly as fast as the
multigrid ocheme, albeit with some transient overshoot. This repid
estaeblishuent of the flowfleld is at the expense of high-frequency error,
which is subsequently damped when the AFZ/AF] alternate cycling is begun. The
nultipgrid algorithm, however, monotonically establigshes the flowficld and
damps high-frequency errors in a far more cfficient wanner.

Experience with all forms of transonic potential £flow calculations has
shovn that convergence rates gzre quite scnsitive to the order and amount of
artificial viscosity: more artificial viscosity generally yields faster
convergence, but at the expense of more widely smeared shocks. Multigrid
schemes have been especially sensitive to tiese effects, and the present cne
is no exception. However, the large improvement #n efficiency offered by the
multigrid over the previous single-grid spectral acheme has allowed the use of

much finer grids, offsetting the present, uncorfertably large artificizl

viscosity.

Supercritical Lifting Airfoil

The lifting supercritical test case was the MACA 0012 at M_ = 0.75 and
Q - 20, which yields a wgsection 11ft coefficient of nearly 0.6. vA shock
appears only on the upper surface for these conditions and 1s rather strong
for a potential calculatlon; the necrmal Mach number ahead of the shock 1s

atout 1.36. Lifting suporcritical test cases are esgpeclally difficult for



gpectral wothods slnce the zolution will alvaye have significant content 1n

the entive frequency specirun; the choek populates the highest frequencies of
. the grid gnd the 1ift {9 predeminantly on the secale of the entire domain. 2n

terative scheme therefore wmust be able to dazp error components ccross the
by spectremn. The AP2/AFY scheme of [15] waz somewhat unreliabie for such
probleng; so a ;ompuriuon vill not be shown between AVZ/AFL and the nultigrid
schene.

A history of the surface pressure coefficient 1s cupplied in Figure 12.

This dewmenstrates the rapld convergence of the entire frequency spectrum of
the soluticn. Pressure distributions are chovm after 0, 1, 4, and 9 cycles of
the fixed-cycle algorithnm; one cycle requires approximately 5 gcconds of
; Cyber~-175 time. The shock overshoot seen in tha 4-cycle freme is a phenomenon
acsociated with the final positioning of the chock by the multigrid cchene.
The finite difference multigrid scheme exhibits sinilar behavior {[13].
! All of *he supercritical spectral rmultigrid calculations showm thus far
used a sequence of five rather thar three grids, mostly due to the finer
finest grid used for these cases. Scheduling within the fixed-cycle multigrid
algorithm was much the same as for the suberitical cases: one or two passces
through the time-step secquence were made on each grid. Convergence for
supercritical cases 1s not always rmonotonic becsuse adjustments in 1ift or
shock position can intrcduce high-frequency errors which may require an extra
cycle to damp. An adaptive cycle algorithm might be of benefit here provided
that the "limit cycle" problem were avolded.

Surface pressure distributions, both at the collocation points and
spectrally expanded onto finer spacing, are showa 1n Filgures 13 and 14 for
grids of 16 x 48 and 18 x 64 points, respectively. Az can be scen, the

coarser-grid result predicts virtually the same shock pcsition as the finer~
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~grid ccaputation; the 1ift ccefficients agree to 1%Z. These results may be

. compared with thoze frem the finite differcnce codes, TAIR and FLO36, shown in

Figures 15 end 16, respectively. The shock predicted by TAIR fs far more
rounded énd gmeared than that of FLO36, reflecting the coarser mesh and larger
artificial viscosity used in the former. The TAIR result shown 1is also only
correct to one.decimal place 1in 1lift as compared with a finer-grid result.
Convergence histories for these four cases: spectral wmultigrid (i6 x 48)

and (18 x 64), TAIR (30 X 145), and FLO36 (32 x 192) are shown in Figure 17.
The spectral results are obviously handicapped in this comparison by the
necessity of such fine (for spectral methods) meshes brought about by the use
of the finite difference artificial viscosity forme. Perhaps the purely
spectral shock-capturing methods currently under development will permit sharp

I
shecks to be captured with still coarser neshes.

VIII. Concluslone

Spectral multigrid methods are still in their infancy. Nevertheless,
they have already exhibited the capacity to ezccelerate drastically iterative
schemes for nonlinesr, as well as linear, problems. Pough estimates of the
aaymptotic convergence rates indicate that the multigrid procedure has led to
an improvement over the single-grid spectral method of nearly a factor of 10
for subcritical cases; the dimprovement 1is considerably greater for
supercritical situations.

The worth of the spectral discretization itself for compressible flows 1is
now clear: equivalent golutlons are indeed obtained with far fewer grid
points than are required for finite difference solutions. Since subcritical

flows are smooth, tha present results, showing both that the spectral method
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convergence rate is far bettor than cecond-crder and also that its sbsolutg
error level is lower thon fipite difference ones even on unreasonebly coarse
grids, are no curprige. Undeniably, any shock diacontinvity in supercritical
flow should produce gome degradation in the formal accuracy of che spectral
golution. Nonetheless, grid refinement studies demonstrate that the epectral
solutions s:abllize on far cosrser grids than do finite difference
soluzions. Coupled with multigrid solution techniques, spectral methods for
steady compressible flows have reached the stage at which they are truly
competitive with finite difference nethods on problens of aerodynanic
interest.

Several aspects of this technique have to be improved before spectral
wmethods for compressible flows reach their full maturity. Ti:» present
relarxation schemes are Just straightforward nmodifications of the onzs usei for
finite difference methods. Surely relaxation schemes more tuned to the
spectral discretiration can and will be devised. There 1s aleo the clear neced
to develop wore suita“le forms of artifictal viscosity for capturing shocks by

spectral methods.

39
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