143 research outputs found

    Low power LVDS transceiver for AER links with burst mode operation capability

    Get PDF
    This paper presents the design and simulation of an LVDS transceiver intended to be used in serial AER links. Traditional implementations of LVDS serial interfaces require a continuous data flow between the transmitter and the receiver to keep the synchronization. However, the serial AER-LVDS interface proposed in [2] operates in a burst mode, having long times of silence without data transmission. This can be used to reduce the power consumption by switching off the LVDS circuitry during the pauses. Moreover, a fast recovery time after pauses must be achieved to not slow down the interface operation. The transceiver was designed in a 90 nm technology. Extensive simulations have been performed demonstrating a 1 Gbps data rate operation for all corners in post-layout simulations. Driver and receiver take up an area of 100x215 m2 and 100x140 m2 respectively.Unión Europea 216777 (NABAB)Ministerio de Ciencia y Tecnología TEC2006-11730-C03-01 (SAMANTA II)Junta de Andalucía P06-TIC-0141

    Optical Fibre Sensors Using Graphene-Based Materials: A Review

    Get PDF
    Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented

    OTA-C oscillator with low frequency variations for on-chip clock generation in serial LVDS-AER links

    Get PDF
    This paper presents the design and simulation of an OTA-C oscillator intended to be used as on-chip frequency reference. This reference will be part of the high speed clock generation circuit for Manchester serial LVDS-AER links. A Manchester LVDS receiver can adapt its operation in a limited range of frequencies, so the most important specification is the frequency stability over temperature and process variations. A novel design methodology is presented to design two oscillators in a 90 nm technology using transistors with 2.5 V supply voltage. Intensive simulations with temperature, process, supply voltage variations and mismatch effects were performed in order to analyze the validity of this approach, obtaining Delta ap 7%.European Union 216777 (NABAB)Ministerio de Educación y Ciencia TEC2006-11730-C03-01Junta de Andalucía P06-TIC-0141

    A comprehensive review: materials for the fabrication of optical fiber refractometers based on lossy mode resonance

    Get PDF
    Lossy mode resonance based sensors have been extensively studied in recent years. The versatility of the lossy mode resonance phenomenon has led to the development of sensors based on different configurations that make use of a wide range of materials. The coating material is one of the key elements in the performance of a refractometer. This review paper intends to provide a global view of the wide range of coating materials available for the development of lossy mode resonance based refractometers.This research was funded by the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (TEC2016-78047-R), the Public University of Navarra (PJUPNA26), and the Spanish Ministry of Universities (FPU15/05663)

    An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors

    Get PDF
    Event-Driven vision sensing is a new way of sensing visual reality in a frame-free manner. This is, the vision sensor (camera) is not capturing a sequence of still frames, as in conventional video and computer vision systems. In Event-Driven sensors each pixel autonomously and asynchronously decides when to send its address out. This way, the sensor output is a continuous stream of address events representing reality dynamically continuously and without constraining to frames. In this paper we present an Event-Driven Convolution Module for computing 2D convolutions on such event streams. The Convolution Module has been designed to assemble many of them for building modular and hierarchical Convolutional Neural Networks for robust shape and pose invariant object recognition. The Convolution Module has multi-kernel capability. This is, it will select the convolution kernel depending on the origin of the event. A proof-of-concept test prototype has been fabricated in a 0.35 m CMOS process and extensive experimental results are provided. The Convolution Processor has also been combined with an Event-Driven Dynamic Vision Sensor (DVS) for high-speed recognition examples. The chip can discriminate propellers rotating at 2 k revolutions per second, detect symbols on a 52 card deck when browsing all cards in 410 ms, or detect and follow the center of a phosphor oscilloscope trace rotating at 5 KHz.Unión Europea 216777 (NABAB)Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Optical fiber exhaled breath sensor based on lossy mode resonance using a graphene oxide sensitive coating

    Get PDF
    Optical fiber sensors (OFS) have attracted increasing attention due to their benefits over traditional sensors, such as small size, biocompatibility, remote sensing ability or safety in flammable environments. Among the different existing configurations of OFS, those based on electromagnetic resonances are very popular as they are reliable, robust and very sensitive. In particular, sensors based on lossy mode resonance (LMR) are very interesting as a wide range of materials, including metal oxides and polymers, can support them and they do not require specific equipment to tune the optical polarization. Graphene-based materials like graphene oxide (GO) or reduced graphene oxide (rGO) have become the most explored materials since Novoselov and Geim achieved its isolation in 2004. Their superior properties, such as high surface area or extreme sensitivity to the external environment, make them ideal candidates for the fabrication of the sensitive coatings required by LMR-based sensors. In this work, the fabrication and characterization of a small and portable exhaled breath LMR-based OFS using GO as sensitive coating is presented. Refractive index changes have been detected showing a fast repetitive behavior with a response time of 150 ms from inhalation to exhalation and a high average sensitivity of 410 nm/RIU
    corecore