22 research outputs found
Dispersion behavior of torsional guided waves in a small diameter steel gas pipe
Condition monitoring of gas pipes has been an important issue for gas companies. Failure to accurately identify condition of gas pipes result in numerous problems. Also, producing a condition monitoring system for buried pipelines is challenging. Small pipes (with diameters less than 50 mm) are considered here as most of the literature focuses on larger pipes. Guided wave theory will be introduced alongside a numerical simulation of the relevant dispersion curves of the system. This paper investigates the feasibility of using torsional guided waves for inspecting defects in buried pipes with small diameters. The pipes are assumed to be lossless and hence the effect of attenuation is ignored in the calculations. Upon finding the theoretical guided wave characteristics, experiments were conducted to see if the aim could be achieved in a realistic scenario. A steel pipe with a diameter of 34 mm and wall thickness of 5.5 mm is considered. High reverberation levels at high frequency propagations due to mode conversion are studied. Having only a limited number of transducers could be a reason for high reverberation at high frequencies
Real-world performance of sub-1 GHz and 2.4 GHz textile antennas for RF-powered body area networks
In Radio Frequency (RF)-powered networks, peak antenna gains and path-loss models are often used to predict the power that can be received by a rectenna. However, this leads to significant over-estimation of the harvested power when using rectennas in a dynamic setting. This work proposes more realistic parameters for evaluating RF-powered Body Area Networks (BANs), and utilizes them to analyze and compare the performance of an RF-powered BAN based on 915 MHz and 2.4 GHz rectennas. Two fully-textile antennas: a 915 MHz monopole and a 2.4 GHz patch, are designed and fabricated for numerical radiation pattern analysis and practical forward transmission measurements. The antennas' radiation properties are used to calculate the power delivered to a wireless-powered BAN formed of four antennas at different body positions. The mean angular gain is proposed as a more insightful metric for evaluating RFEH networks with unknown transmitter-receiver alignment. It is concluded that, when considering the mean gain, an RF-powered BAN using an omnidirectional 915 MHz antenna outperforms a 2.4 GHz BAN with higher-gain antenna, despite lack of shielding, by 15.4Ă— higher DC power. Furthermore, a transmitter located above the user can result in 1Ă— and 9Ă— higher DC power at 915 MHz and 2.4 GHz, respectively, compared to a horizontal transmitter. Finally, it is suggested that the mean and angular gain should be considered instead of the peak gain. This accounts for the antennas' angular misalignment resulting from the receiver's mobility, which can vary the received power by an order of magnitude
The impact of multi-stack fuel cell configurations on electrical architecture for a zero emission regional aircraft
All-electric aircraft can eliminate greenhouse gas emissions during aircraft mission, but the low predicted energy storage density of batteries (=0.5 kWh/kg), and their life cycle, limits aircraft payload and range for regional aircraft. Proton Exchange Membrane Fuel Cells (PEMFCs) using hydrogen are explored as an alternative power source. As the effort on designing high power density and highly efficient fuel cell systems continues, a trade off study on the effect of fuel cell configurations and the electrical conversion strategy on system efficiency, total weight, failure cases, and reduction of power due to failures, will inform future designs. Introducing viable fuel cell stacks and electrical configurations motivates such a trade off study, as well as concentrated design effort into these components. Currently available fuel cell stacks are designed at lower power (in the range of 150kW) to what is required for regional aircraft propulsion (in the range of 4MW). Hence to achieve the total required power, the fuel cell stacks are connected in parallel and series to create multi-stack configurations and provide higher power. In this study, multi-stack fuel cell configurations and the selected DC/DC converters are assessed. Each configuration is evaluated based on power converter design and redundancy, design for high voltage, degradation of fuel cell stacks, total system efficiency, and controllability of fuel cell stacks
Integrated mission performance analysis of novel propulsion systems: analysis of a fuel cell regional aircraft retrofit
This paper presents the development and application of an integrated, higher-fidelity framework developed within CHARM (the Cranfield Hybrid electric Aircraft Model) for the design, performance analysis and overall evaluation of novel electrified propulsion systems. The developed framework is used to model and analyze the performance characteristics of a Fuel Cell (FC) regional aircraft system in comparison with a conventional regional aircraft and a hydrogen gas turbine regional aircraft retrofit. The FC propulsion system and the hydrogen gas turbine are retrofitted to the same conventional aircraft platform. Physics-based aircraft performance calculations, propeller maps, gas turbine component maps, off-design cycle analysis, electric component maps, calculations for the electric power management and distribution, and a Proton-Exchange Membrane FC (PEMFC) configuration sized to cover the power requirements of a regional aircraft, are integrated within this framework to capture the performance and interaction of components, sub-systems and aircraft during any flight mission and conditions. The aircraft performance, the propulsion system performance characteristics and the emissions of the three technologies are calculated and discussed to understand the challenges and opportunities of using hydrogen-electric propulsion (FC). The effect of capturing the variable mission parameters and flight phases on the performance of the electric power system and FC is presented and compared against a lower fidelity modeling approach for the electric powertrain. The sensitivity of the FC propulsion system and its attributes to varying mission requirements (island-hopping, range, cruise altitude, ambient conditions), as well as the change in the consumed fuel, are demonstrated. This framework can be used to inform the decision-making for the design of electric components and thermal management systems (TMS), and the importance of capturing the trade-off between mass, efficiency and operational constraints in the design process is highlighted. Also, the off-design performance of the electric power system designs and FC is modeled to decide if the design is within acceptable limits under various conditions, and capture the effect of mission requirements and flight conditions on the energy consumption of the overall aircraft system. Finally, a parametric analysis addresses the effect of power density improvement with future technology on the energy per passenger and feasibility of the FC regional aircraft
The impact of electric machine and propeller coupling design on electrified aircraft noise and performance
Novel propulsion systems have been studied in literature to reduce aircraft emissions with hydrogen or other electrical energy sources. Hybrid Electric Propulsion (HEP) system consists of electric machines as an alternative way to provide power for propulsion resulting in the reduction of aircraft fuel consumption. While reduction of emission is the main driver of new HEP designs, aircraft noise reduction and performance improvement will also need to be investigated. Much quieter electrified aircraft than conventional aircraft is explored with considering the benefits of coupled design between the propeller and electric machines. In this study, several electric machine designs have been explored and coupled with the propeller design to study the trade-off between the aerodynamic and acoustic performance of the propeller. Aerodynamic optimization is used as a baseline to minimize the energy consumption to find the aerodynamics optimum subject to constraints on the thrust levels during the mission. The propeller aerodynamic optimizer considers the electric machine efficiency map, which is a function of propeller torque and rotational speed, to find the optimum combination of propeller and electric machine designs. The objective function of the acoustic optimizations is to reduce the cumulative noise level over the entire mission. It is shown that a wider envelope of peak motor efficiency in the efficiency map provides acoustics and aerodynamic performance benefits. The trade-offs between reducing noise or increasing aerodynamic efficiency to reduce energy consumption are demonstrated
Wearable and autonomous computing for future smart cities: open challenges
The promise of smart cities offers the potential to change the way we live, and refers to the integration of IoT systems for people-centred applications, together with the collection and processing of data, and associated decision making. Central to the realization of this are wearable and autonomous computing systems. There are considerable challenges that exist in this space that require research across different areas of electronics and computer science; it is this multidisciplinary consideration that is novel to this paper. We consider these challenges from different perspectives, involving research in devices, infrastructure and software. Specifically, the challenges considered are related to IoT systems and networking, autonomous computing, wearable sensors and electronics, and the coordination of collectives comprising human and software agents
Distributed sensing with low-cost mobile sensors towards a sustainable IoT
Cities are monitored by sparsely positioned high-cost reference stations that fail to capture local variations. Although these stations must be ubiquitous to achieve high spatio-temporal resolutions, the required capital expenditure makes that infeasible. Here, low-cost IoT devices come into prominence; however, non-disposable and often non-rechargeable batteries they have pose a huge risk for the environment. The projected numbers of required IoT devices will also yield to heavy network traffic, thereby crippling the RF spectrum. To tackle these problems and ensure a more sustainable IoT, the cities must be monitored with fewer devices extracting highly granular data in a self-sufficient manner. Hence, this paper introduces a network architecture with energy harvesting low-cost mobile sensors mounted on bikes and unmanned aerial vehicles, underpinned by key enabling technologies. Based on the experience gained through real-world trials, a detailed overview of the technical challenges encountered when using low-cost sensors and the requirements for achieving high spatio-temporal resolutions in the 3D space are highlighted. Finally, to show the capability of the envisioned architecture in distributed sensing, a case study on air quality monitoring investigating the variations in particulate and gaseous pollutant dispersion during the first lockdown of COVID-19 pandemic is presented. The results showed that using mobile sensors is as accurate as using stationary ones with the potential of reducing device numbers, leading to a more sustainable IoT