30 research outputs found
An Integrated Approach Providing Scientific and Policy-Relevant Insights for South-West Bangladesh
Bangladesh is identified as an impact hotspot for sea-level rise in multiple studies. However, a range of other factors must be considered including catchment management, socio-economic development and governance quality, as well as delta plain biophysical processes. Taking an integrated assessment approach highlights that to 2050 future changes are more sensitive to human choice/policy intervention than climate change, ecosystem services diminish as a proportion of the economy with time, continuing historic trends and significant poverty persists for some households. Hence under favourable policy decisions, development could transform Bangladesh by 2050 making it less vulnerable to longer-term climate change and subsidence. Beyond 2050, the threats of climate change are much larger, requiring strategic adaptation responses and policy changes that must be initiated now
Sustainable deltas in the Anthropocene
What are the possible trajectories of delta development over the coming decades? Trajectories will be determined by the interactions of biophysical trends such as changing sediment supplies, subsidence due to compaction of sediment and climate change, along with key socio-economic trends of migration and urbanisation, agricultural intensification, demographic transition, economic growth and structural change of the economy. Knowledge and understanding of plausible trajectories can inform management choices for deltas in the Anthropocene, including new policy perspectives and innovative adaptation. The emergence of visionary delta management plans in some large deltas, such as the Bangladesh Delta Plan 2100, is an important and necessary component. This chapter synthesises the state of knowledge and highlights key elements of science that will inform decisions on future management of deltas.<br/
Sustainability of Global Golden Inland Waterways
Sustainable inland waterways should meet the needs of navigation without compromising the health of riverine ecosystems. Here we propose a hierarchical model to describe sustainable development of the Golden Inland Waterways (GIWs) which are characterized by great bearing capacity and transport need. Based on datasets from 66 large rivers (basin area > 100,000 km2) worldwide, we identify 34 GIWs, mostly distributed in Asia, Europe, North America, and South America, typically following a three-stage development path from the initial, through to the developing and on to the developed stage. For most GIWs, the exploitation ratio, defined as the ratio of actual to idealized bearing capacity, should be less than 80% due to ecological considerations. Combined with the indices of regional development, GIWs exploitation, and riverine ecosystem, we reveal the global diversity and evolution of GIWs' sustainability from 2015 to 2050, which highlights the importance of river-specific strategies for waterway exploitation worldwide
ENVIRONMENTAL SCIENCE. Profiling risk and sustainability in coastal deltas of the world.
Recommended from our members
ENVIRONMENTAL SCIENCE. Profiling risk and sustainability in coastal deltas of the world.
Deltas are highly sensitive to increasing risks arising from local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We quantified changing flood risk due to extreme events using an integrated set of global environmental, geophysical, and social indicators. Although risks are distributed across all levels of economic development, wealthy countries effectively limit their present-day threat by gross domestic product-enabled infrastructure and coastal defense investments. In an energy-constrained future, such protections will probably prove to be unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas. The current emphasis on short-term solutions for the world's deltas will greatly constrain options for designing sustainable solutions in the long term
Recommended from our members
ENVIRONMENTAL SCIENCE. Profiling risk and sustainability in coastal deltas of the world.
Deltas are highly sensitive to increasing risks arising from local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We quantified changing flood risk due to extreme events using an integrated set of global environmental, geophysical, and social indicators. Although risks are distributed across all levels of economic development, wealthy countries effectively limit their present-day threat by gross domestic product-enabled infrastructure and coastal defense investments. In an energy-constrained future, such protections will probably prove to be unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas. The current emphasis on short-term solutions for the world's deltas will greatly constrain options for designing sustainable solutions in the long term
A global empirical typology of anthropogenic drivers of environmental change in deltas
It is broadly recognized that river delta systems around the world are under threat from a range of anthropogenic activities. These activities occur at the local delta scale, at the regional river and watershed scale, and at the global scale. Tools are needed to support generalization of results from case studies in specific deltas. Here, we present a methodology for quantitatively constructing an empirical typology of anthropogenic change in global deltas. Utilizing a database of environmental change indicators, each associated with increased relative sea-level rise and coastal wetland loss, a clustering analysis of 48 global deltas provides a quantitative assessment of systems experiencing similar or dissimilar sources and degrees of anthropogenic stress. By identifying quantitatively similar systems, we hope to improve the transferability of scientific results across systems, and increase the effectiveness of delta management best practices. Both K-Means and Affinity Propagation clustering algorithms find similar clusters, with relative stability across small changes in KMeans cluster number. High-latitude deltas appear similar, in terms of anthropogenic environmental stress, to several low-population, low-latitude systems, including the Amazon delta, despite substantially different climatic regimes. Highly urbanized deltas in Southeast Asia form a distinct cluster. By providing a quantitative boundary between groups of delta systems, this approach may also be useful for assessing future delta change and sustainability given projected population growth, urbanization, and economic development trends
Recognizing wetland ecosystem services for sustainable rice farming in the Mekong Delta, Vietnam
The increased rice production in the Mekong Delta during the last two decades has improved agricultural income and reduced poverty, but it has also had negative impacts on the environment and human health. This study shows that integrated rice-fish farming and integrated pest management strategies provide sustainable options to intensive rice farming, because of a more balanced use of multiple ecosystem services that benefit the farmers' health, economy and the environment. The study investigates and compares farming strategies among 40 rice and 20 rice-fish farmers in two locations in the Mekong Delta. Production costs and income are used to compare the systems' financial sustainability. The farmers' perception on how their farming practices influence on ecosystem services and their livelihoods are used as an indication of the systems' ecological and social sustainability. Although rice-fish farmers used lower amount of pesticides and fertilisers than rice farmers, there were no statistical differences in their rice yields or net income. Rice was seen as the most important ecosystem service from rice fields and related wetlands, but also several other ecosystem services, such as water quality, aquatic animals, plants, habitats, and natural enemies to pests, were seen as important to the farmers' livelihoods and wellbeing. All farmers perceived that there had been a general reduction in all these other ecosystem services, due to intensive rice farming during the last 15 years, and that they will continue to decline. The majority of the farmers were willing to reduce their rice yields slightly for an improved quality of the other ecosystem services.</p
