

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Sustainability of Global Golden Inland Waterways

Citation for published version:

Wang, Y, Chen, X, Borthwick, A, Li, T, Liu, H, Yang, S, Zheng, C, Xu, J & Ni, J 2020, 'Sustainability of Global Golden Inland Waterways', Nature Communications, vol. 11, 1553. https://doi.org/10.1038/s41467-020-15354-1

Digital Object Identifier (DOI):

10.1038/s41467-020-15354-1

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Nature Communications

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Sustainability of Global Golden Inland Waterways
2	Authors: Yichu Wang ^{1,2†} , Xiabin Chen ^{1†} , Alistair G. L. Borthwick ³ , Tianhong Li ¹ ,
3	Huaihan Liu ⁴ , Shengfa Yang ⁴ , Chunmiao Zheng ⁵ , Jianhua Xu ⁶ , Jinren Ni ¹
4	
5	Author Affiliations:
6	¹ The Key Laboratory of Water and Sediment Sciences, Ministry of Education,
7	College of Environmental Sciences and Engineering, Peking University, Beijing,
8	100871, P. R. China
9	² Beijing Innovation Center for Engineering Science and Advanced Technology, Peking
10	University, Beijing, 100871, P. R. China
11	³ Institute for Infrastructure and Environment, School of Engineering, The University
12	of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK
13	⁴ National Inland Waterway Regulation Engineering Technology Research Center,
14	Chongqing Jiaotong University, Chongqing, 400074, P. R. China
15	⁵ Center for Global Large Rivers, School of Environmental Science and Engineering,
16	Southern University of Science and Technology, Shenzhen, 518055, P. R. China
17	⁶ Department of Environmental Management, Peking University, Beijing, 100871, P. R.
18	China
19	

- 21 [†]These authors contributed equally to this work.
- 22 Correspondence and requests for materials should be addressed to J.R.N. (e-mail:
- 23 jinrenni@pku.edu.cn)

24 Abstract

25 Sustainable inland waterways should meet the needs of navigation without 26 compromising the health of riverine ecosystems. Here we proposed a hierarchical 27 model to describe sustainable development of golden inland waterways (GIWs) 28 characterized by great bearing capacity and transport need. Based on datasets from 66 29 large rivers (basin area $> 100,000 \text{ km}^2$) worldwide, we identified 34 GIWs, mostly 30 distributed in Asia, Europe, North America, and South America, typically following a 31 three-stage development path from the initial, developing to developed stage. For 32 most GIWs, the exploitation ratio, defined as the ratio of actual to idealized bearing 33 capacity, should be less than 80%, due to ecological considerations. By examining 34 indices of regional development, GIWs exploitation, and riverine ecosystem, we 35 revealed the global diversity and evolution of GIWs sustainability from 2015 to 2050, 36 which highlighted the importance of river-specific strategies for waterway 37 exploitation worldwide.

39 Introduction

Inland waterways play an important role in the global transportation system^{1,2}, 40 but over-exploitation of waterways for navigational purposes³ has often been to the 41 detriment of river ecosystems^{4,5}. Each inland waterway has a bearing capacity, which 42 43 is largely determined by local hydro-geomorphic conditions such as depth, width and 44 velocity of river flow, and duration of freeze-over events³. Inland waterways are often modified to expand their bearing capacity⁶ in response to increasing transport need 45 46 resulting from socio-economic development of the associated river basins. Such 47 modifications may lead to changes in riverbed geomorphology⁷, and affect habitats of aquatic organisms as well as impair the functioning of the river ecosystem⁸. 48 49 Moreover, maintenance dredging is usually necessary for waterway regulation, and requires sustained investment⁶. Therefore, overall costs become extremely high when 50 restoring a river ecosystem, once ecological damage has occurred⁹⁻¹¹. 51 52 Regional socio-economic development requires sustainable inland waterways for transporting goods and passengers in large river basins¹²⁻¹⁴. Bearing in mind that the 53 54 essence of regional sustainability is to protect the environment while achieving socioeconomic development goals¹⁵⁻¹⁸, the maintenance of river health is of particular 55 56 importance in supporting the long-term provision of ecosystem goods, services and values for future needs¹⁹. In other words, sustainable inland waterways, while 57 58 expanding bearing capacity to meet the increasing transport need driven by regional development, must protect major ecological functions of river systems relevant to 59

60 channel continuity, riparian and floodplain connectivity, flow regime, and

61	biodiversity ^{20, 21} . Long-term sustainability of inland waterways not only involves
62	attaining consistency between bearing capacity and transport need but also requires a
63	tradeoff between waterway exploitation intensity, infrastructure maintenance, and
64	ecological conservation/restoration. In addition, climatic and hydrological uncertainty
65	may pose further challenges to waterway sustainability ^{19, 22} .

66 Here, we introduce the concept of a Golden Inland Waterway (GIW), which represents a large inland waterway with considerable bearing capacity and increasing 67 transport need (or potential) driven by prosperous socio-economic development in its 68 basin. A GIW could also be regarded as the main axis running through a large-river 69 70 economic belt which acts as an important conveyor supporting regional sustainability. 71 Previous studies of the sustainable development of inland waterway transport systems have been made at regional scale¹²⁻¹⁴ and so lack insight into the diverse sustainability 72 73 of global waterways at different development stages. As emerging economies undergo rapid development^{23, 24} such as in the cases of Brazil, Russia, India, China, and South 74 75 Africa, there is usually an associated surge in demand for inland waterway transport, 76 and so it is important to understand the sustainability of GIWs at different 77 development stages and their implications for overall regional sustainability. 78 The most challenging task is to identify the threshold for GIWs exploitation

79 under ecological considerations, which could be specifically quantified by

80	establishing a set of indices to measure ecological pressures such as river
81	fragmentation, wetland dis-connectivity, flow disruption, and loss of biodiversity ^{5, 25-}
82	²⁷ . Furthermore, eco-efficiency is another effective parameter used to measure
83	regional sustainable development, which is evaluated according to multiple dividends
84	arising from basic need, economic growth, resource conservation, and ecological
85	protection ²⁸ . For example, previous studies have adopted the ratio between economic
86	performance (e.g. Gross Domestic Product) and environmental impact (e.g. ecological
87	footprint) to evaluate regional eco-efficiency and to explore the decoupling effect of
88	resource consumption, pollution emissions and economic growth ²⁹ . In light of
89	accelerating stressors from economic development ³⁰ , population growth ³¹ , and climate
90	change ²² in different parts of the world, the concept of GIWs should be very useful to
91	inform river transport planning and regional development.
92	This paper examines the sustainability of GIWs identified from 66 global large
93	rivers (basin area > 100,000 km ²). The development paths of GIWs worldwide are
94	examined in terms of a general three-stage route with particular attention to the
95	exploitation threshold due to ecological considerations in the vicinity of the turning
96	point from the developing to the developed stage. Using a comprehensive framework
97	(Fig. 1) to correlate data related to GIWs exploitation, riverine ecosystem, and
98	regional development, we reveal the global diversity and evolution of GIWs
99	sustainability from 2015 to 2050, which highlight the need for river-specific strategies
100	for GIWs exploitation in the context of health of the local ecosystem and regional
	· · · ·

101 sustainability.

102 **Results and Discussions**

103 Identification and global distribution of GIWs

- 104 Nine types of large waterways were identified (Fig. 2a and Supplementary
- 105 Table1) based on a bearing capacity index, BCI (Supplementary Fig. 1), determined as
- 106 the basin-averaged inland waterway bearing capacity (see Methods); and a socio-
- 107 economic index, SEI (Supplementary Fig. 2) established from gross domestic product,
- agriculture and industry outputs, and population (see Methods). BCI and SEI were

109 each divided into three levels (small S; middle M; and large L) at threshold values of

- 110 0.33 and 0.67, which were primarily determined according to the significance of cost-
- 111 effective advantage of inland waterway transport³² and the level of human
- 112 development of the river basin of interest³³ (details see Methods). Consequently, nine
- 113 basic patterns of inland waterway were classified as L-L, L-M, L-S, M-L, M-M, M-S,
- 114 S-L, S-M, and S-S (the letters prior and post the hyphen denote the level of BCI and
- 115 SEI for inland waterways, respectively). Fig. 2b shows the global distribution of all
- 116 the different types of waterways, of which four types, L-L, L-M, M-M, and M-L,
- 117 were further identified as Golden Inland Waterways (GIWs). The identified GIWs
- 118 have threshold values based on a qualified freight volume that takes low-cost
- advantage of inland waterway transport, and a middle to high socio-economic
- 120 development level to simulate transport need. Fig. 2c shows that the L-L type occurs
- 121 mainly in Europe, the Americas, and Asia; the L-M type in Europe, North America

122 and Asia; the M-M in South America and Europe; and the M-L mostly in Asia. No

123 GIW is in Oceania. Three GIWs are observed in Africa, where countries are in the

124 early or middle stage of industrialization, despite abundant natural resources and huge

- 125 development potential. It should be noted that GIW is not an absolute concept and so
- 126 the threshold used for its identification could be adjusted based on revised need or
- 127 further expert opinions.

128 Characterization of GIWs' development paths and stages

129 Figure 3 shows the development paths of nine representative GIWs expressed in 130 terms of bearing capacity and transport need (given by freight transport volume, see 131 Methods). We first consider L-L waterways. Fig.3a shows that the inland waterway 132 bearing capacity of the Mississippi sharply increased between the 1930s and 1970s, 133 when navigation improvement works were undertaken, and later declined as the waterway infrastructure aged³⁴. The volume of freight passing through the Mississippi 134 135 waterway increased almost exponentially until the 1980s, but then flattened off. The Rhine followed a similar development path (Fig. 3b)³⁵. Conversely, freight volume in 136 137 the Volga (Fig. 3c) declined significantly from 595 Mt in 1989 to ~70 Mt in 2015, 138 following the demise of the Soviet Union. In recent years, the Yangtze experienced an 139 exponential growth in development need, with cargo volume reaching 2180 Mt in 140 2015, a value nearly five times higher than that in 2000 (Fig. 3d). Meanwhile, the 141 Yangtze's bearing capacity also increased significantly to 1700 Mt in 2015. The Pearl 142 River has experienced a similar development path (Fig. 3e), being situated close to a

143	special economic zone in south China; its freight volume and bearing capacity were
144	737 Mt and 718 Mt in 2015. As the largest river in the world, the Amazon exhibited a
145	remarkable discrepancy between its bearing capacity of 2039 Mt and freight volume
146	of 51.92 Mt in 2015 (Fig. 3f), which offers an opportunity for future increase in inland
147	navigation.
148	Figures 3g-i show the evolution of the remaining three classes of GIW. The
149	Ganges is M-L, with large SEI (0.92) like the Yangtze (0.99). However, the Ganges
150	has BCI of 0.63, much smaller than that of the Yangtze (0.97), owing to India's
151	monsoon climate and lower investment in waterway infrastructure. From the 1980s
152	onwards, the bearing capacity of the Ganges increased to 614 Mt whereas its freight
153	volume rose only slightly to 3.92 Mt by 2015 (Fig. 3g). The L-M GIWs generally
154	exhibited bearing capacity that exceeded development need over long periods (e.g.
155	Rhone, Fig 3h). The Congo (Fig. 3i), an M-M waterway, appears to have followed a
156	similar development path to the Ganges; the bearing capacity of the Congo has grown
157	to 460 Mt yr ⁻¹ far larger than its freight volume about 1.5 Mt yr ⁻¹ , offering a huge
158	surplus potential for socio-economic development.
159	The foregoing illustrate the diverse development paths taken by typical GIWs,
160	influenced by geographical, societal, and economic conditions. Taken overall, the
161	GIW development path follows an S curve at a slow-fast-slow rate, with two turning
162	points that separate the three development stages: initial, developing, and developed.
163	These three stages are consistent with Chenery et al.'s theory ³⁶ in which

164	industrialization is divided into six evolutionary phases. For each GIW, the
165	development stage can be determined through the proportion of increase in
166	agricultural, industrial and service industries as well as the GDP per capita
167	(Supplementary Table 2).
168	Consistency between bearing capacity and transport need
169	To promote a high level of potential socio-economic development, GIWs must
170	achieve a proper balance between bearing capacity and transport need. However,
171	these are frequently inconsistent because both undergo separate dynamic changes. A
172	consistency index (CI), defined as the ratio of freight transport volume to bearing
173	capacity of inland waterways (see Methods), was used to examine the variation in
174	coordination between bearing capacity and transport need during different GIW
175	development stages. Tracking the evolution of CI would be helpful to decision makers
176	whose goal is to maintain an appropriate pace of expansion in bearing capacity of
177	GIWs at different times.
178	At the initial stage, a lower value of CI (< 0.2) results from low social
179	productivity and transportation need, as exemplified by the Ganges and the Congo
180	(Fig. 3g, i) for which $CI < 0.05$. During the developing and developed stages,
181	different industrialization and urbanization processes lead to diverse development
182	modes. For example, the Mississippi and the Rhine (Fig. 3a,b) experienced
183	considerable economic growth and moderate waterway exploitation, with CI ranging
184	from 0.2 in the 1930s to 0.6 in the 1970s. Although certain GIWs, including the

185	Amazon, are presently undergoing an economic boom, their CI is less than 0.05 (Fig.
186	3f) due to their immense bearing capacity. However, CI for the Volga increased to 0.8
187	during the developing period (1950s-1990s) but significantly decreased at the second
188	developmental stage turning point due to a marked decline of freight volume during
189	the break up of the former Soviet Union. Afterwards, over-exploitation of its inland
190	waterways driven by development inertia incurred unacceptable cost (Fig. 3c). The
191	development path of the Volga serves as a warning that GIWs in rapidly developing
192	regions, such as the Yangtze and the Pearl river basins, might also experience great
193	challenges in the course of achieving a balance between increasing bearing capacity,
194	ecological alteration, and socio-economic development. As illustrated in Fig.3d,e, the
195	CI of the Yangtze and the Pearl rapidly increased from ~ 0.1 to 1.0 from the 1980s to
196	2015; planners nevertheless contemplate further waterway expansion.
197	These empirical results show that the ideal range of CI for a long-term balance
198	between bearing capacity and transport need seems to be in the range 0.2~0.6 for most
199	GIWs at developing and developed stages, particularly those with similar
200	development modes to those of the Mississippi and the Rhine. Values of CI that are
201	too small (< 0.2) or too large (> 0.6) are both unsuitable for GIW development. Too
202	small CI (< 0.2) means that the potential and function of a GIW is far from fully
203	developed. Too large CI (> 0.6), impling a too tight pace between capacity and need,
204	would lead to overload of inland waterways which restricts the efficiency and safety
205	of shipping services. In this case, government usually tends to expand continuously

the bearing capacity of inland waterways to address transport need and to enhance
navigational safety⁶, which would greatly increase the risk of over-exploitation driven
by development inertia, and excess capacity of inland waterways driven by Factor
Hoarding theory³⁷.

210

GIWs exploitation and limitation

211 Exploitation intensity of inland waterways directly influences the bearing 212 capacity of waterways and ecological stress on river basins. Exploitation ratio (ER), 213 defined as the ratio of actual to idealized bearing capacity of inland waterways (see 214 Methods), was used to examine the exploitation intensity of GIWs at different stages. 215 The idealized bearing capacity (IBC), in the absence of navigation obstacles, may be determined from channel dimensions estimated from river discharge data³⁸. Fig. 4a,b 216 217 shows the relationship between ER and development stage for all 34 GIWs in 2015. Following Chenery et al.³⁶ (Supplementary Table 2), the GIW development stage may 218 219 be interpreted through either GDP per capita (Fig. 4a, 2015 data based on 2010 US\$) 220 or industrial structure (Fig. 4b). 221 For GIWs at the initial stage, basin averaged ER varied from 16% (Congo) to 222 45% (Red). At low ER during the initial stage, river ecological pressure is unlikely to

- arise from inland waterway construction. The first turning point, TPI, occurs at the
- transition from initial to developing stage (Fig. 4a,b), driven by increasing economic
- 225 prosperity. The value of ER corresponding to TPI is imprecise, given different socio-
- economic development modes near the turning point, but is generally below 40%.

227	During the GIW developing stage, basin averaged ER ranges from 35%
228	(Uruguay) to 89% (Volga). GIWs in South America usually have relatively low ER
229	(e.g. Amazon 36%, Orinoco 45%, and Parana 51%) due to their large bearing
230	capacities. GIWs with higher ER are generally located in Europe and Asia (e.g. Don
231	89%, Oder 87%, Yangtze 67% and Pearl 65%). The second turning point, TPII, occurs
232	at the transition from developing to developed stage (Fig 4a,b). Challenges to GIW
233	sustainability occur at TPII because of the different possible development strategies
234	(e.g. A, radical; B, moderate; and C, conservative) (Fig. 4a,b) and thus influence long
235	term sustainability, given that the design life of inland waterway infrastructure usually
236	exceeds 50 years ³⁹ .
237	What value of <i>ER</i> is best for GIW sustainability about TPII? This can be
238	answered from three perspectives. From the experience perspective, during the
239	developed stage, the past expansion of GIWs suggests a maximum value of ER of
240	about 80% is sensible (Fig. 4a,b), noting the average ER value for all GIWs in the
241	developed stage is 79%. In practice, this threshold should be identified for regional
242	goals and might be slightly different depending on ecological conditions; however, it
243	should be noted that GIWs would become ecologically unsustainable if ER were
244	above 80%. From the economic perspective, considerable economic loss could occur
245	when ER exceeds 80% in order to maintain exaggerated waterway capacity. In fact,
246	sustained investment for regular maintenance of waterway infrastructure is still
247	needed (see e.g. 6, 40, Supplementary Table 3) even if the high growth rate in freight

248	volume begins to turn down (Fig. 4c). A pertinent lesson can be learned from the
249	Volga River, where ER reached 89% as the freight volume growth rate became
250	negative in the 1990s. From the ecological perspective, a greater risk of riverine
251	ecological deterioration would be encountered when ER is over 80%. Fig. 4d
252	classifies the ecological status ⁴¹ of 134 reaches in six European GIWs (i.e. Rhine,
253	Danube, Elbe, Rhone, Loire, and Oder) into four grades (good, moderate, poor, and
254	bad). The proportion of reaches with moderate status decreases from 100% to 31%
255	with increasing ER ; however, the proportion with poor and bad status increases
256	significantly when ER exceeds 80%. Although other engineering schemes such as
257	reservoirs, irrigation systems, and inter-basin transfer canals, may also impact on the
258	health of a river ecosystem, over-exploitation of an inland waterway will lead
259	inevitably to an unsustainable river ecosystem. Without doubt, ER can provide early
260	warning of possible over-exploitation of GIWs and ecological consequences for river
261	basins.

262 Health of riverine ecosystems impacted by GIW exploitation

Engineering projects during waterway construction greatly influence structures
and functions of river ecosystems from morphological, hydrological, and biotic
perspectives^{4, 5, 25-27}. An ecological pressure index (*EPI*) was introduced to evaluate
the engineering impact on functionality of the river ecosystem, notably the key
components of habitats such as channel, riparian, floodplain, and flow environments.
Continuous river networks are fragmented by navigational lock-dam systems. Natural

269	physical and biological interconnections between river channels and their floodplains
270	are severed by river channel deepening and widening projects, and shoreline
271	fortifications. Local riparian and floodplain habitats are degraded by channelization
272	and bank hardening during waterway exploitation. The hydrological regimes of rivers
273	alter due to the effect of navigational requirements on flow regulation. All these
274	foregoing habitation alterations further influence the biodiversity of riverine
275	ecosystem. Supplementary Fig. 3 summarizes the hierarchical system established to
276	evaluate EPI, in which the health status of a riverine ecosystem impacted by
277	waterway exploitation could be presented by a set of metrics (see Methods) including
278	the river fragmentation index (FI), wetland dis-connectivity index (WDI), fraction of
279	impervious surfaces (FIS), flow disruption index (FDI), fish richness index (FRI), and
280	proportion of non-native fish (PNF).
281	In this system, ecological thresholds are defined as the critical conditions beyond
282	which the key ecological functions of river ecosystem would be significantly
283	damaged due to over-exploitation of GIWs (e.g. as ER approaches its threshold of
284	80%). Correspondingly, the ecological thresholds are identified as $FI < 0.6$, $WDI <$
285	0.3, <i>FIS</i> < 0.85, <i>FDI</i> < 0.65, <i>FRI</i> > 0.05, and <i>PNF</i> < 40%, respectively (Fig. 5).
286	The relationship between ER and EPI for 34 GIWs is displayed in
287	Supplementary Fig. 4. For GIWs at the initial stage, most have a low value of EPI (\leq
288	0.7) except Krishna, Ganges, and Indus. Ecological degradation of these three rivers
289	might be due to human activities such as irrigation, hydropower generation, and

290	drinking water abstraction, rather than inland waterway exploitation. For GIWs at the
291	developing stages, EPI increases from 0.12 to 0.6 when ER changes from 35% to
292	75%. When $ER > 80\%$, EPI of riverine ecosystems (e.g. Volga, Don, Oder, and
293	Dnieper) increases significantly (0.57~0.83, Supplementary Fig. 4). The Volga and
294	Dnieper are exposed to a high level of river fragmentation, which would further
295	restrict migration of aquatic species within the river networks (Fig. 5a). The flow
296	regimes of the Don and Dnieper are significantly disrupted (Fig. 5d), which might
297	further alter hydrological regimes experienced by downstream aquatic organisms and
298	facilitate invasion by lentic species. The most serious issue affecting the Oder seems
299	to be the high fraction of impervious surface area (Fig. 5c), which would alter the
300	channel morphology and degrade riparian habitats. Moreover, the Dnieper shows
301	severe wetland dis-connectivity (Fig. 5b), and as a result, floodplain regions are likely
302	to become dysfunctional. For GIWs at the developed stage (Supplementary Fig. 4),
303	although EPI still increases with ER, EPI exhibits a relatively low value compared
304	with GIWs at the developing stage, even for rivers with $ER > 80\%$ (e.g. Loire, Elbe,
305	Rhone). One of the possible reasons is that large-scale ecological restoration is
306	undertaken for intensely exploited GIWs at the developed stage. Taking the Rhone
307	River as an example, the Rhone Restoration Project (Lamouroux et al., 2015),
308	implemented since early 1990s, successfully remedied ecological functions severely
309	damaged by navigation and other human activities, recovering minimum flows by a
310	factor up to 10 and reconnecting about 50% of the floodplains to the main channel.

311 Eco-efficiency of GIWs-affiliated basin

312	Eco-efficiency index (EEI), defined as the ratio of GDP to ecological footprint
313	(see Methods), was used to measure socio-economic-ecological quality of the GIW-
314	affiliated basins. As a macroscopic metric of regional development, EEI is expected to
315	be maximized at a certain development stage in the GIW-affiliated basins.
316	Supplementary Figure 5 illustrates the relationship between ER and EEI for
317	GIW-affiliated basins at different stages. At the initial stage, EEI has a low value,
318	ranging from 781 to 2146 US\$ per gha, which is primarily due to insufficient local
319	socio-economic development. At the developing stage, EEI ranges from 1595 to 5399
320	US\$ per gha when <i>ER</i> is less than 80%. For $ER > 80\%$, <i>EEI</i> decreases significantly
321	(1122~3122 US\$ per gha) due to increases in environmental degradation and
322	resources consumption. At the developed stage, EEI exhibits a much higher value
323	(6065~9756 US\$ per gha), even for rivers with $ER > 80\%$ (e.g. Loire, Elbe, Rhone).
324	This might be partially explained by the Environmental Kuznets Curve (EKC)
325	hypothesis ^{42, 43, ?} , i.e. as actual per capita income improves, investment in ecological
326	restoration would ameliorate environmental quality (see e.g. 44,?).
327	Sustainability of GIWs in 2015 and 2050

328 To assess the long-term sustainability of global GIWs in 2015 and 2050, we

- 329 propose a sustainability index (SI) which is a composite quantification based on
- 330 scores of *CI*, *ER*, *EPI*, and *EEI* (see Methods). Maximization of *EEI* and minimization
- 331 of *EPI* are two targets of GIWs sustainability in the context of economic growth and

332	ecological health. Unity-normalization of the ascending rank order of data was used to
333	evaluate the score of EEI and EPI over all basins (see Methods). Considering the
334	nonlinearity of the constraints to sustainability, a normal distribution was used to
335	evaluate the scores of CI and ER (Supplementary Fig. 6), with a preferred range of 0.2
336	< <i>CI</i> $<$ 0.6 and an upper limit of <i>ER</i> = 80%. The <i>SI</i> metric provides an integrated
337	measure of the sustainability of the GIWs required by regional sustainable
338	development.
339	In 2015, a relatively low SI (< 0.5) is derived for GIWs at initial stage of
340	development in Asia and Africa (Fig. 6a) due to lower CI, ER as well as EEI, which
341	implies less pressure from waterway exploitation at present but does not mean long-
342	term sustainability at the developing and developed stages (Supplementary Table 4 &
343	5). A moderate level of SI ($0.5 \sim 0.7$) is observed for GIWs at the developing stage,
344	except for the Dnieper ($SI=0.46$) and Amur ($SI=0.45$). The Dnieper river basin is
345	exposed to a very high threat of ecological deterioration ($EPI = 0.83$) caused by over-
346	exploitation ($ER > 80\%$) of its inland waterway, leading to low SI (Supplementary
347	Table 5). Similar over-exploitation has also occurred in the Volga, Don, and Oder
348	river basins ($0.59 < SI < 0.61$). For the Yangtze, Pearl, Danube, and Sao Francisco
349	waterways ($0.61 < SI < 0.70$) whose <i>ER</i> values exceed 60%, there is an alarming risk
350	of over-exploitation driven by development inertia. Meanwhile, the Yangtze and Pearl
351	River basins exhibit a very low EEI (1595 US\$ per gha), implying the necessity of
352	industrial transformation (Supplementary Table 5). The remaining GIWs distributed in

353	South America have moderate SI with smaller ER (e.g. Amazon, Parana, and Orinoco)
354	due to their large idealized bearing capacity. For the foreseeable future, these
355	waterways are likely to continue to meet long-term transport needs without requiring
356	new infrastructure. All nine GIWs at the developed stage exhibit high sustainability
357	($SI \ge 0.7$), and are distributed in Europe and North America. Exemplars of
358	development paths are given by those followed by the Mississippi waterway ($SI =$
359	0.90) and Rhine waterway ($SI = 0.93$), with ideal $CI (0.2 \sim 0.6)$ and $ER (< 80\%)$, and
360	relatively low EPI as well as high EEI. Although the Rhone, Loire, and Elbe
361	waterways have low CI (0.001 ~ 0.025) and extremely high ER (~100%), they
362	nevertheless achieve high sustainability due to their large score of EEI and EPI
363	resulting from large-scale ecological restoration (Lamouroux et al., 2015).
364	By 2050, we estimate 10 GIWs will enter the developing stage (e.g. Ganges,
365	Mekong, and Niger), and 5 GIWs (e.g. Danube and Yangtze) the developed stage
366	(Supplementary Table 4) based on the predicted GDP per capita. Using linear
367	regression, we also forecast the transport need expressed by freight transport volume
368	in 2050 (Supplementary Table 4). Two scenarios were used to examine the possible
369	changes to the sustainability of global GIWs by 2050: one where ER is kept constant;
370	the other where hypothetical adjustments are made to ER of GIWs, and hence the
371	bearing capacity and the waterway exploitation-induced ecological pressure also
372	change (see Methods). For the first scenario, when ER is maintained at 2015 level
373	(Fig 6b), the SI values of the Ganges, Red, Amazon, Krishna, and Niger increase

374	considerably (by $11\% \sim 21\%$) in 2050; whereas the SI value for the Mekong decreases
375	by 19% due to too large CI but a low EEI which implies a need to upgrading the
376	waterway (Supplementary Table 5). The SI value of the remaining GIWs appears to be
377	stable (relative percentage $< 10\%$), confirming that <i>ER</i> is a key factor influencing the
378	sustainability of GIWs. In the second scenario, the resulting level of sustainability of
379	global GIWs in 2050 (Fig. 6c) is significantly improved compared both to the first
380	scenario (Fig. 6b) and to the level of sustainability in 2015 (Fig. 6a). A significant
381	increase in SI (by $10\%\sim50\%$) is obtained for 13 GIWs which are mainly distributed in
382	south Asia and Africa (Supplementary Table 5). Furthermore, the Mekong, Red,
383	Niger, Uruguay, Nile, and Amur waterways attain moderate sustainability, with SI
384	exceeding 0.5. However, the intensity of economic development might place
385	considerable pressure on these river eco-systems.
386	It is likely that climate change will have different impacts on different GIWs
387	sustainability depending on their regional location. For GIWs, water depth is most
388	sensitive to climate change. Droughts could severely affect navigational services
389	though reducing low water levels either to completely non-navigable depths or to
390	levels that freight volumes of vessels have to be reduced, resulting in increased
391	transport prices and decreased welfare ^{22, 45} . Floods threaten navigational safety and
392	speed especially when water level exceeds a critical permitted threshold determined
393	by infrastructure ⁴⁵ . Herein, water depth data for GIWs are either provided by relevant
394	government agencies or estimated from river discharges using a standard power law

395 relationship. Further studies are recommended to obtain insights into climate impacts on GIWs sustainability by use of global circulation models, downscaling hydro-396 397 meteorological parameters to regional scale, and assessment of non-stationary 398 statistical changes. Uncertainties and errors in estimates of river discharges introduced 399 by projection of runoff to river discharge under climate change through either 400 process-driven or data-driven models also merit careful analysis. For GIWs at high 401 latitude, the annual navigable days influenced by ice formation might be another concern. However, the impacts of ice are limited considering its freeze-up duration or 402 403 frequency, and are expected to reduce further because the projected temperature will 404 increase in the future 45 .

405 Implications for sustainable development of GIWs

406 The comprehensive framework for assessing GIWs sustainability (Fig. 1) is 407 capable of communicating interactions among disparate data by providing links 408 between regional socio-economic development, GIWs exploitation, and human pressure on the riverine ecosystem. In particular, the underlying metrics enable 409 410 different options to be prioritized, and respectively implemented, postponed, or even discounted according to expert judgement, which should be useful to decision makers 411 412 concerned with basin-wide economic development and ecological restoration. A 413 sensible way of undertaking this is to recommend strategies according to the state of 414 development of the river basin under consideration.

415 For a GIW at initial stage of development, the GIW has insufficient transport

416	need due to low socio-economic development level. With emerging socio-economic
417	development, transport need is stimulated and waterway regulation projects are
418	required to expand GIW bearing capacity through improved waterway conditions,
419	suggesting increases in CI, ER, and potentially EPI. As GIWs transform from the
420	initial to the developing stage in the forthcoming decades, planners should implement
421	strategies that are not too conservative in order to exploit socio-economic opportunity.
422	During the developing stage, planners should attempt to achieve an optimal
423	waterway exploitation ratio to address challenges to sustainability. In practice, for a
424	GIW with $ER < 60\%$, a minor increase in ER is recommended in the following
425	decades. For a GIW where $60\% < ER < 80\%$, the risk of over-exploitation driven by
426	development inertia should be reduced, perhaps by lowering the gradient in ER with
427	time. For an over-exploited GIW with $ER > 80\%$, it is necessary to reduce the <i>EPI</i>
428	through ecological restoration activities.
429	For GIWs at the developed stage, the aim should be to maintain the high value of
430	SI. For a GIW with high ER, all that is required is to continue investment in waterway
431	maintenance and ecological rehabilitation projects, and/or upgrading the quality (e.g.
432	incorporation of multiple targets including recreation and ecology, and reassessment
433	of transport need ^{3, 46}) of the entire waterway system. In this case, the <i>EPI</i> metric is
434	particularly important for monitoring purposes.
435	In practice, analysis of the metrics would be a rather more complicated exercise
436	than indicated above because the target values would be necessarily case-specific, the

437 processes underlying the metrics may interact, and detailed adjustment of sub-metrics438 may be required.

439	In the forthcoming decades, certain GIWs will experience adjustments in
440	development path, and long-term strategy targeting sustainability is of particular
441	significance. From the global perspective, our estimates of sustainability of GIWs
442	highlight the importance of river-specific strategies for waterway exploitation in the
443	context of regional development and ecological restoration.

444 Methods

445 Identification of GIWs

446 GIWs were quantitatively identified from 66 large inland waterways of basin area >

447 100,000 km², with two variables characterizing their bearing capacity and transport

448 need driven by socio-economic development within the basins: bearing capacity index

and socio-economic index. Given that the scale varies by several orders of magnitude

- 450 across different waterways, we used rank-normalization to reduce the relative
- 451 influence of the indexes. The ranked indicator values were then normalized to unity

452 (i.e. ranging from 0 lowest to 1 highest ranked river) in order to reduce distortion that

- 453 would otherwise be introduced by low-valued raw indicators obtained for certain
- 454 waterways. Information on the waterways was extracted from the global river network

455 supplied by PKU and by HYDROSHEDS (http://www.hydrosheds.org/).

456 Bearing capacity index

457 The bearing capacity index, BCI, was used to represent the navigational capacity of a

458 given waterway. Inland waterway bearing capacity was approximated by the

459 theoretical annual freight volume that can pass through a given waterway cross-

460 section. Annual freight volume was determined from

$$461 \quad BC = \frac{MT}{K_h} q_h \tag{1}$$

462 where *M* is the average tonnage (t), *T* is the number of navigable days per year; K_h 463 is a design hourly factor (the ratio of design hourly traffic volume to annual average 464 daily traffic volume, noting the heterogeneity of river traffic flow) whose value was 465 set to a default of 0.14 owing to a lack of measured data, and q_h is the hourly basic 466 inland waterway traffic capacity obtained from following equation which satisfies the 467 bidirectional continuous traffic hypothesis:

468
$$q_{\lambda} = m_u \frac{3600(v_u - v_w)}{l_u} + m_d \frac{3600(v_d + v_w)}{l_d}$$
(2)

469 where m_u , m_d are the numbers of upstream and downstream ships; v_u , v_d are

470 upstream and downstream vessel speeds; v_w is waterway flow velocity; and l_u , l_d

471 are the longitudinal domain lengths of upstream and downstream ships, estimated

472 using a ship domain model⁴⁷.

473 Basin-average bearing capacities (*BC*) were derived from the reach-scale bearing

474 capacities through length-weighted averaging.

475 The normalized bearing capacity index (BCI) was given by

476
$$BCI_{w} = \frac{\widehat{BC}_{w} - \min(\widehat{BC}_{w})}{\max(\widehat{BC}_{w}) - \min(\widehat{BC}_{w})}$$
(3)

477 where \widehat{BC}_w is the ascending rank order over all waterways of bearing capacity at 478 waterway basin *w*.

479	We assumed that the same type of vessel passes through the same grade of waterway
480	wherever in the world. The average tonnage (M) of inland vessels (Supplementary
481	Table 6) was estimated based on waterway grade determined by minimum waterway
482	maintenance depth. As an approximation, we evaluated the grade of global waterways
483	using the navigation standard of inland waterways of China. Minimum waterway
484	maintenance depth of the 66 global inland waterways (Supplementary Table 7) was
485	obtained from relevant government agencies (Supplementary Table 8). The annual
486	navigable days (T) for each waterway with high latitude was estimated using data on
487	freeze-up duration (see Supplementary Table 9) with T for the remaining inland
488	waterways set to 0. Herein, m_u and m_d were set to 1; v_u and v_d were set to be
489	$3 \sim 5 \text{ ms}^{-1} \text{ and } 5 \sim 7 \text{ ms}^{-1}; v_w \text{ was set to } 1 \text{ ms}^{-1}.$
490	Supplementary Table 6 also lists the values of l_u and l_d . It should be noted that
491	bearing capacity referred to the actual bearing capacity of inland waterways based on
492	the actual minimum waterway maintenance depth. Further details of the reach-scale
493	bearing capacity of global large inland waterways are given in Supplementary Fig. 7,
494	and values of the BCI for each large river are listed in Supplementary Table 1.
495	Socio-economic index

496 The socio-economic index (SEI) represents transport need driven by socio-economic

- 497 development, and was established from the gross domestic product (GDP), agriculture
- 498 and industry outputs (*AIO*), and population (*POP*), as follows:

499
$$SEI_{w} = \left[\frac{\widehat{GPD}_{w} - \min(\widehat{GDP}_{w})}{\max(\widehat{GDP}_{w}) - \min(\widehat{GDP}_{w})} + \frac{\widehat{AIO}_{w} - \min(\widehat{AIO}_{w})}{\max(\widehat{AIO}_{w}) - \min(\widehat{AIO}_{w})} + \frac{\widehat{POP}_{w} - \min(\widehat{POP}_{w})}{\max(\widehat{POP}_{w}) - \min(\widehat{POP}_{w})}\right]/3$$

500 (4)

501	where \widehat{GDP}_w , \widehat{AIO}_w , and $\widehat{POP}_{i,w}$ are the ascending rank orders over all waterways
502	of the three indicators, and w refers to a given waterway. Given the lack of statistical
503	data on GDP, AIO, and POP at global basin scale, we used a partition coefficient
504	matrix to estimate basin parameters from the datasets at country scale. Historical
505	GDP, AIO, and POP data were all obtained from the United Nations database
506	(http://data.un.org/) in the time period from 1970 to 2017. Supplementary Figs. 8-10
507	present the normalized GDP, POP, and AIO indices for global large inland waterways.
508	Supplementary Table 1 lists the corresponding SEI for each large river.
509	We assumed equal weights in calculating SEI. Of course, it is extremely difficult to
510	determine proper values for the weights owing to limited knowledge of the relative
511	importance of each indicator. To test for sensitivity, we employed a Monte Carlo
512	approach to simulate the effect of different weight scenarios on SEI. This approach
513	generated random index weights between 0 and 1, assuming a uniform distribution,
514	and we calculated the standard deviation of 10000 simulation SEI results as the error
515	using an equal weight hypothesis. We found SEI was not very sensitive to index
516	weights for 76% of the 66 large rivers, with the relative difference ranging from -40%
517	to 40% (Supplementary Fig. 11). Only a few rivers with very high GDP or population
518	scores (e.g. Murray-Darling, Columbia, Congo, and Zambezi) displayed a relatively
519	significant variation with the index weights.

520 Identification of GIWs

521	GIWs have comparative advantages in terms of both bearing capacity and transport
522	need or potential. Therefore, we established a two-dimensional approach given by
523	BCI and SEI in order to identify GIWs. BCI and SEI were each divided into three
524	levels (large L, middle M, and small S) by certain thresholds; hence, nine basic
525	patterns of inland waterway were classified as L-L, L-M, L-S, M-L, M-M, M-S, S-L,
526	S-M, and S-S (the letters before and after the hyphen denote the level of BCI and SEI
527	for inland waterways, respectively).
528	We define a GIW as an inland waterway with BCI and SEI simultaneously exceeding
529	prescribed thresholds. The BCI threshold was determined based on average tonnage of
530	ships. Previous experience suggests that the low-cost advantage of inland waterway
531	transport starts to appear once the average tonnage of ships exceeds 300 t
532	(corresponding to $BCI = 0.29 \sim 0.34$) and becomes significant when the average
533	tonnage of ships exceeds 1000 t (corresponding to $BCI \sim 0.62$) ³² . The SEI threshold
534	was determined according to the human development index (HDI) of the river basin
535	of interest. HDI is a metric used to assess the social and economic development levels
536	of countries or regions, and quantifies life expectancy, educational attainment, and
537	income as a standardized number ³³ . The median values of SEI corresponding to low
538	human development basins ($HDI < 0.55$) and mid- to- high human development
539	basins $(0.55 < HDI < 0.8)$ are 0.28 and 0.64 respectively.

540 For simplicity, the lower band of equipartition of the normalized indices, 0.33, was set

541	as a threshold value for both BCI and SEI used to identify GIWs (as M-M, L-M, L-M,
542	and L-L patterns) for large rivers. The upper band, 0.66, was used as an approximate
543	threshold for further screening the most representative GIWs (L-L pattern). It should
544	be noted that GIW is not an absolute concept and so the threshold used for its
545	identification is not a constant, but can be adjusted following expert opinion. When
546	the threshold for identification of GIWs is varied, the number of GIWs changes
547	accordingly. For example, by varying the threshold values by \pm 50%, we find that the
548	number of identified GIWs changes from 34 for the baseline case to 28~41 (see
549	Supplementary Table 10).
550	This approach not only reflects the comparative advantages of GIWs but also reveals
551	the contradiction between existing inland waterway capacity and potential transport
552	need driven by socio-economic development.
553	Evaluation of sustainability of GIWs
554	Four indicators were used to evaluate the sustainability of GIWs: consistency index
555	(CI), exploitation ratio (ER), ecological pressure index (EPI), and eco-efficiency
556	index (EEI).
557	Consistency between bearing capacity and transport need
558	The coordination (or gap) between navigability and transport need of GIWs was
559	measured by a consistency index, defined as the ratio of freight transport volume to
560	bearing capacity. Given the substantial difference that can occur between magnitude
561	of capacity and need of a given waterway, a normalized approach was taken as
	28

follows. If capacity > need, the consistency index $CI_{i,w}$ in year *i* at waterway *w* was determined from

564
$$CI_{i,w} = \frac{N_{i,w}}{BC_{i,w}}$$
 (5)

in which $BC_{i,w}$ is the bearing capacity in year *i* of waterway *w*, Mt yr⁻¹, and $N_{i,w}$ is the transport need in year *i* of waterway *w*, Mt yr⁻¹. If capacity \leq need, $I_{i,w} = 1.0$. The basin-average consistency index (*CI*) was estimated from the basin-average transport need divided by the basin-average bearing capacity. Supplementary Fig. 12 shows the *CI* of global inland waterways in 2015. More details see Supplementary

570 Table 5

571 The transport need of GIWs was quantified by the freight transport volume

572 (Supplementary Table 11). We applied an elastic coefficient method to estimate the

573 historical and future freight volumes of representative GIWs; the projection outcome

574 obtained using this method closely matched the aggregated result of detailed

575 transportation forecast models, such as TRANS–TOOLS⁴⁸. The compound annual

576 growth rate (CAGR) of freight volume was estimated from:

577
$$CAGR_{freight} = EC \cdot CAGR_{GDP}$$
 (6)

578 where $CAGR_{freight}$ is the compound annual growth rate of freight volume, EC is the

- 579 elastic coefficient estimated for different scenarios (Supplementary Table 12), and
- 580 $CAGR_{GDP}$ is the compound annual growth rate of GDP. We used historical and future
- 581 GDP data from Maddison Project Database
- 582 (https://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-

583 database-2018) and International Futures (IFs) platform Version 7.31 produced by the University of Denver (https://pardee.du.edu/) to calculate CAGR_{GDP} over ten year 584 585 intervals. Future population, and industrial and agricultural output data were also 586 derived from the International Futures (IFs) platform. And the historical bearing 587 capacity of typical GIWs was estimated from waterway maintenance dimensions data 588 available for particular years, including the start and end times of large-scale 589 waterway regulation projects. **GIWs** exploitation ratio 590

591 The exploitation ratio describing the exploitation intensity of GIW *w* at reach *l* was592 estimated from

593
$$ER_{l,w} = \frac{BC_{l,w}}{IBC_{l,w}}$$
(7)

594 where $BC_{l,w}$ is the bearing capacity of waterway w at reach l, and $IBC_{l,w}$ is the

idealized bearing capacity of waterway w at reach l. The basin-average exploitation

596 ratio (ER) was finally estimated from the basin-average bearing capacity divided by

- 597 the idealized basin-average bearing capacity.
- 598 The idealized bearing capacity (IBC) represents the maximum potential of bearing
- 599 capacity for an inland waterway, and can also be estimated from Eqs. (1) and (2). The
- 600 only difference is that minimum waterway maintenance depth is replaced by river
- 601 depth (d_w) using
- 602 $d_w = 1.5 \ d_{ave,dry}$ (8)
- 603 where $d_{ave,dry}$ is the average depth in the dry season estimated from the river

- 604 discharge by power law relationships³⁸. Considering the potential of exploitation and
- 605 the relationship between average depth and fairway maintenance depth, we employed
- an amplification factor to calculate idealized fairway depth. After the grade of
- 607 waterway was specified, the idealized bearing capacity was calculated using equations
- 608 (1)-(2). Supplementary Fig. 13 and Supplementary Fig. 14 separately display the
- 609 idealized bearing capacity (IBC) of global large rivers and reach-scale exploitation
- 610 ratio (ER) of global GIWs in 2015.
- 611 Ecological pressure index
- 612 The health of a river ecosystem affected by human activities is measured through *EPI*,
- 613 which was evaluated as

614
$$EPI = \frac{\frac{FI}{FI_0} + \frac{WDI}{WDI_0} + \frac{FIS}{FIS_0}}{3} + \frac{FDI}{FDI_0} + \frac{\frac{1-FRI}{1-FRI_0} + \frac{PNF}{PNF_0}}{2}$$
 (9)

- 615 where FI, WDI, FIS, FDI, FRI, and PNF are the fragmentation index, wetland dis-
- 616 connectivity index, fraction of impervious surfaces, flow disruption index, fish
- 617 richness index, and proportion of non-native fish; FI₀, WDI₀, FIS₀, FDI₀, FRI₀, and
- 618 PNF₀ are threshold values of the foregoing indicators. It should be noted that FI is
- 619 calculated using equation (10), noting that not all dams are built for navigability
- 620 purposes,
- $621 \quad FI = FI' \times \alpha \qquad (10)$
- 622 where α is a proportionality factor determined from

$$623 \qquad \alpha = \frac{N_{navi}}{N_{total}} \tag{11}$$

624 in which N_{navi} is the number of dams used for navigability in a basin, and N_{total} is the

- 625 total number of dams in a basin. FI', WDI, FIS, and FDI data were extracted from
- 626 http://www.riverthreat.net/data.html. N_{navi}, and N_{total} were obtained from Global
- 627 Reservoir and Dam (GRanD) Database (http://globaldamwatch.org/grand/). Data on
- 628 the total number of freshwater fish species living in the river basin and the number of
- 629 non-native fish species were obtained from the Fish-SPRICH database (https://static-
- 630 content.springer.com/esm/art%3A10.1007%2Fs10750-012-1242-
- 631 6/MediaObjects/10750_2012_1242_MOESM2_ESM.txt).
- 632 Supplementary Table 5 lists the *EPI* for each GIW in 2015.

633 **Eco-efficiency index**

634 Eco-efficiency implies increased output that satisfies human demand, low resource

635 consumption, and minimal environmental impact. In a sense, eco-efficiency

- 636 represents the level of ecological civilization (where humans repair previous
- 637 ecological damage and integrate properly with nature) of a region. For each GIW, an

638 eco-efficiency index (*EEI*) in US\$ per gha can be determined from²⁹

$$639 \quad EEI = \frac{GDP}{EF} \tag{12}$$

- 640 where GDP (in US\$) is the gross domestic product and EF (in global hectares, gha) is
- 641 the ecological footprint of the GIW.

- 643 much area of biologically productive land or water an individual, population or
- 644 activity requires to produce all the resources it consumes and to absorb the waste it

645 generates^{49, 50}.

646 GDP data were extracted from the United Nation database (http://data.un.org/).

647 Ecological footprint data were obtained from the Global Footprint Network

648 (https://www.footprintnetwork.org/). Further details on the calculation are given by

Example 649 Lin et al. 50 .

650 Supplementary Table 5 lists the *EEI* for each GIW in 2015.

- 651 Sustainability of GIWs
- 652 Sustainability of GIWs was evaluated by means of a sustainability index (SI) based on
- 653 the scores of a consistency index (S_{CI}) , an exploitation ratio (S_{ER}) , and a score of *EPI*
- and $EEI(S_{EEI, EPI})$. The evaluation criterion for sustainability should consider CI, ER,

655 *EPI* and *EEI* simultaneously. Values of *CI* that are too large (> 0.6) or too small (<

- 656 0.2) are unsuitable for GIW development because the former implies a tight pace
- between capacity and need which may restrict waterway performance, and the latter
- means that the potential of a GIW is far from reaching fully developed. Similarly, low
- 659 ER is good for the river ecosystem but the transport need of inland waterway is not
- 660 perfectly met, and so this situation presents a lower level of GIW sustainability.
- 661 Conversely, high ER (> 80%) inevitably results in ecological stress. Hence, neither CI
- 662 nor *ER* are monotone functions with respect to sustainability. Therefore, we used a
- 663 normal distribution to evaluate the scores of CI and ER from

664
$$S_{CI} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{CI-\mu}{2\sigma^2}}$$
 (13)

665 where S_{CI} is the score of the consistency index CI, $\mu = 0.6$, and $\sigma = 0.4$, and

666
$$S_{ER} = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{2\pi}{100}-\mu}$$
 (14)

667 where S_{ER} is the score of the exploitation ratio ER, $\mu = 0.8$, and $\sigma = 0.4$. These

- 668 equations are plotted in Supplementary Fig. 6.
- S_{EELEPI} , the score of *EEI* and *EPI*, was evaluated using a similar equation to equation
- 670 (4) using data on the combination of *EPI* and *EEI* as $\left(\frac{EEI}{1+EPI}\right)$ for the year of interest.
- 671 Here, SI is equal to the average of S_{CI} , S_{ER} and $S_{EEI,EPI}$. Results from sensitivity
- analysis for SI performed by Monte Carlo approach are displayed in Supplementary
- 673 Figs. 15-17.

674 Scenario analysis

- 675 Scenario analysis was used to forecast the sustainability of global GIWs in 2050. In
- 676 the first scenario, ER for each waterway was kept constant at the 2015 value and
- 677 changes only occur in the freight transport volume and *EEI* (See Supplementary Table
- 678 4 & 5). The freight transport volume and *EEI* in 2050 were estimated by an elastic

- 680 In the second scenario, ER was varied according to suggested measures aimed at
- 681 improving sustainability. In this case, it was assumed that ER values of developing
- stage GIWs which underwent rapid development by 2015 (e.g. Yangtze and Pearl)
- 683 should not exceed 80%, whereas ER values of GIWs undergoing more moderate
- development (e.g. Amazon and Tocantins) should be increased slightly (by no more
- than 10%). For GIWs that were in the initial stage in 2015, ER was permitted to
- 686 increase more significantly (but by no more than 20%). For GIWs with ER higher
- than 80% in 2015, it was assumed that expansion had ended. The second scenario was

- idealized, in that *BC* and *EPI* also changed as *ER* varied (See Supplementary Table 4
 & 5).
- 690 For both scenarios, *EEI* values in 2050 were estimated through linear extrapolation of
- 691 *EEI* data obtained during 2000~2014. *EPI* values in 2050 were estimated using the
- 692 following regression formula for GIWs at the developing and developed stages,
- 693 obtained from data in 2015,
- $694 \quad EPI = 0.16 + 0.57 \ ER \quad (R^2 = 0.56) \tag{15}$
- 695 The bearing capacity of each waterway in 2050 was calculated from $BC = ER \times IBC$,
- 696 with *IBC* assumed unchanged.
- 697 Supplementary Table 13 provides a description of each metric mentioned in the
- 698 Methods, along with their data source(s) and interpretation. The major relevant terms
- are defined in the Glossary, given at the end of the paper.
- 700 Data Availability
- 701 Data on the physical and socio-economic characteristics of global large inland
- 702 waterways at reach scale are available at figshare (DOI:
- 703 10.6084/m9.figshare.11653281). Basin-scale data related to inland waterways
- reported in this paper are provided in the Supplementary Information file and Source
- 705 Data file. All other data, including river networks, basin boundaries, GDP, agriculture
- and industry outputs, population, river depths, dam distribution, ecological indices
- and ecological footprint are publicly available, as described in the Methods. The
- source data underlying Figs 2–6 and Supplementary Figs 1, 2, 4, 5 and 7–17 are

709 provided as a Source Data file.

710 Code Availability

- 711 Python codes used (1) to estimate basin-scale parameters from the datasets at country
- scale, (2) to estimate the historical and future freight volumes of waterways, and (3) to
- carry out the sensitivity analysis by means of the Monte Carlo approach are available
- 714 at figshare (DOI: 10.6084/m9.figshare.11662497).

715 References

- 1. Willems, J. J., Busscher, T., Woltjer, J. & Arts, J. Co-creating value through
 renewing waterway networks: A transaction-cost perspective. *J. Transp. Geogr.* 69,
 26, 25, (2019)
- 718 26–35 (2018).
- 719 2. Rohács, J. & Simongáti, G. The role of inland waterway navigation in a sustainable
 720 transport system. *Transport* 22, 148–153 (2007).
- 3. Hijdra, A., Arts, J. & Woltjer, J. Do we need to rethink our waterways? Values of
 ageing waterways in current and future society. *Water Resour. Manag.* 28, 2599–
 2613 (2014).

4. Sukhodolova, T., Weber, A., Zhang, J. & Wolter, C. Effects of macrophyte
development on the oxygen metabolism of an urban river rehabilitation structure. *Sci. Total Environ.* 574, 1125–1130 (2017).

- 5. Vörösmarty, C. J. et al. Global threats to human water security and river
 biodiversity. *Nature* 467, 555–561 (2010).
- 6. Ahadi, K., Sullivan, K. M. & Mitchell, K. N. Budgeting maintenance dredging

730 projects under uncertainty to improve the inland waterway network performance.

731 Transp. Res. Pt. e-Logist. Transp. Rev. 119, 63–87 (2018).

- 7. Teatini, P. et al. Hydrogeological effects of dredging navigable canals through
 lagoon shallows. A case study in Venice. *Hydrol. Earth Syst. Sci.* 21, 5627–5646
 (2017).
- 8. Weber, A., Garcia, X. F. & Wolter C. Habitat rehabilitation in urban waterways: the
 ecological potential of bank protection structures for benthic invertebrates. *Urban Ecosyst.* 20, 759–773 (2017).
- 9. Bernhardt, E. S. et al. Synthesizing U.S. river restoration efforts. *Science* 308, 636–637 (2005).
- 10. Szałkiewicz, E., Jusik, S. & Grygoruk, M. Status of and perspectives on river

- restoration in Europe: 310 000 EUR per hectare of restored river. *Sustainability* 10,
 129–144 (2018).
- 11. Logar, I., Brouwer, R. & Paillex, A. Do the societal benefits of river restoration
 outweigh their costs? A cost-benefit analysis. *J. Environ. Manage.* 232, 1075–1085
 (2019).
- 12. United Nations Economic Commission of Europe. *White paper on efficient and sustainable inland water transport in Europe* 58–67 (2011). Retrieved from
 http://www.unece.org/fileadmin/DAM/trans/main/sc3/publications/WhitePaper Inl
- 749 and_Water_Transport_2011e.pdf
- 750 13. Asian Development Bank. Promoting inland waterway transport in the People's
- 751 *Republic of China* 42–65 (2016). Retrieved from
- https://www.adb.org/sites/default/files/publication/189949/inland-waterwaytransport-prc.pdf
- 14. Fischenich, J. C., Alphen, J. V., Mitchell, H., Hiver, J. M. & Fiedler, M.
- 755 *Guidelines for sustainable inland waterways and navigation* (eds PIANC General
- 756 Secretariat) 24–28 (2003). Retrieved from
- 757 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=14EB997ED31C714290
- 758 DD9769F39BBD7E?doi=10.1.1.593.5198&rep=rep1&type=pdf
- Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. *Science* 349, 638–643 (2015).
- 16. Leslie, H. M. et al. Operationalizing the social-ecological systems framework to
 assess sustainability. *Proc. Natl. Acad. Sci. U. S. A.* 112, 5979–5984 (2015).
- 763 17. Turner, B. L. et al. A framework for vulnerability analysis in sustainability
- 764 science. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 8074–8079 (2003).
- 765 18. Brundtland, G. H. et al. Report of the World Commission on Environment and
- 766 *Development: Our Common Future* (eds MacNeill, J. et al.) 6–8 (New York, 2008).
- 767 Retrieved from http://www.ask-force.org/web/Sustainability/Brundtland-Our-
- 768 Common-Future-1987-2008.pdf

- Poff, N. L. et al. Sustainable water management under future uncertainty with ecoengineering decision scaling. *Nat. Clim. Chang.* 6, 25–34 (2016).
- 20. Chorley, R. J. & Kennedy, B. A. *Physical Geography: a Systems Approach*
- 772 (Prentice-Hall, London, 1971).
- 773 21. Allan, J. D. & Castillo, M. M. Stream Ecology: Structure and Function of Running
- 774 *Waters, Second Edition* (Springer, Dordrecht, 1994).
- 22. Koetse, M. J. & Rietveld, P. The impact of climate change and weather on
- transport: An overview of empirical findings. *Transport. Res. Part D-Transport.*

Environ. **14**, 205–221 (2009).

- 23. Wilson, D. & Purushothaman, R. Dreaming with BRICs: The Path to 2050.
- (Goldman Sachs, New York, 2003). Retrieved from
- 780 https://www.goldmansachs.com/insights/archive/archive-pdfs/brics-dream.pdf
- 24. Bhattacharya, S., Shilpa & Kaul, A. Emerging countries assertion in the global
 publication landscape of science: a case study of India. *Scientometrics* 103, 387–
 411(2015).
- 25. Gabel, F., Lorenz, S. & Stoll, S. Effects of ship-induced waves on aquatic
 ecosystems. *Sci. Total Environ.* 601, 926–939 (2017).
- 786 26. Grill G. et al. Mapping the world's free-flowing rivers. *Nature* 569, 215–
 787 221(2019).
- 788 27. Burgin, S. & Hardiman, N. The direct physical, chemical and biotic impacts on
- Australian coastal waters due to recreational boating. *Biodivers. Conserv.* 20, 683–
 701(2011).
- 28. Mickwitz, P., Melanen, M., Rosenström, U. & Seppälä, J. Regional eco-efficiency
 indicators-a participatory approach. *J. Clean Prod.* 14, 1603–1611(2006).
- 29. Yang, L. & Yang, Y. T. Evaluation of eco-efficiency in China from 1978 to 2016:
- Based on a modified ecological footprint model. Sci. Total Environ. 662, 581–

- 795 590(2019).
- 30. Gereffi, G. & Lee, J. Economic and social upgrading in global value chains and
 industrial clusters: Why governance matters. *J. Bus. Ethics* 133, 25–38 (2016).
- 31. Best, J. Anthropogenic stresses on the world's big rivers. *Nat. Geosci.* 12, 7–
 21(2019).
- 800 32. Jia, D. S. Comparative advantages and promotion of inland waterway
- 801 transportation. *Water transportation Digest* **8**, 24–26 (2004). (in Chinese)
- 802 33. United Nations Development Programme. Human Development Report 2016
- 803 *Human Development for Everyone*, 198–201 (New York, 2016). Retrieved from
- 804 http://hdr.undp.org/sites/default/files/2016_human_development_report.pdf
- 805 34. DuBowy, P. J. Mississippi River Ecohydrology: Past, present and future.
- 806 *Ecohydrol. Hydrobiol.* **13**, 73–83 (2013).
- 807 35. Willems, J., Busscher, T., Hijdra, A. & Arts, J. Renewing infrastructure networks:
 808 New challenge, new approach? *Transp. Res. Procedia* 14, 2497–2506 (2016).
- 809 36. Chenery, H. B. & Syrquin, M. in Industrialization and growth: A comparative
- 810 study (ed Jeanne R.), 68–78 (New York, 1986). Retrieved from
- http://documents.worldbank.org/curated/en/714961468135943204/pdf/NonAsciiFil
 eName0.pdf
- 813 37. Burnside, C. & Eichenbaum, M. Factor Hoarding and the Propagation of Business
 814 Cycles Shocks. *Am. Econ. Rev.* 86, 1154–1174 (1994).
- 815 38. Andreadis, K. M., Schumann, G. J. P. & Pavelsky, T. A simple global river
- bankfull width and depth database. *Water Resour. Res.* **49**, 7164–7168 (2013).
- 817 39. Hijdra, A., Woltjer, J. & Arts, J. Dutch and American waterway development:
- 818 identification and classification of instruments for value creation. *Int. Plan. Stud.*
- **23**, 278–291 (2018).

- 40. Tamuno, P. B. L., Smith, M. D. & Howard, G. "Good dredging practices": The
- 821 place of traditional eco-livelihood knowledge. *Water Resour. Manag.* 23, 1367–
- 822 1385 (2009).
- 41. Carballo, R. et al., WFD indicators and definition of the ecological status of rivers. *Water Resour. Manag.* 23, 2231–2247 (2009).
- 42. Apergis, N. & Ozturk, I. Testing environmental Kuznets curve hypothesis in Asian
 countries. *Ecol. Indic.* 52, 16–22 (2015).
- 43. Ozokcu, S. & Ozdemir, O. Economic growth, energy, and environmental Kuznets
 curve. *Renew. Sust. Energ. Rev.* 72, 639–647 (2017).
- 44. Theiling, C. H., Janvrin, J. A. & Hendrickson, J. Upper Mississippi River
 restoration: implementation, monitoring, and learning since 1986. *Restor. Ecol.* 23, 157–166 (2015).
- 45. Christodoulou, A., Christidis, P. & Bisselink, B. Forecasting the impacts ofclimate change on inland waterways. Preprint at
- 834 https://doi.org/10.1016/j.trd.2019.10.012 (2019).
- 46. Hijdra, A., Woltjer, J. & Arts, J. Troubled waters: An institutional analysis of
 ageing Dutch and American waterway infrastructure. *Transp. Policy* 42, 64–74
- 837 (2015).
- 838 47. Liu, J., Zhou, F., Li, Z., Wang, M. & Liu, R. Dynamic ship domain models for
- capacity analysis of restricted water channels. J. Navig. 69, 481–503 (2016).
- 48. Van Dorsser, J. C. M. Very long term development of the Dutch Inland Waterway
- 841 Transport System: Policy analysis, transport projections, shipping scenarios, and a
- new perspective on economic growth and future discounting. (eds Wolters, M.A. et
- 843 al.) 28–30 (Rotterdam, 2015). Retrieved from
- 844 https://doi.org/10.4233/uuid:d9cd85d4-2647-49e4-8e7c-df66e27681d3
- 49. Lin, D. et al. Ecological footprint accounting for countries: Updates and results of
 the National Footprint Accounts, 2012–2018. *Resources* 7, (2018).

- 847 doi:10.3390/resources7030058
- 848 50. Lin, D. et al. Working Guidebook to the National Footprint and Biocapacity
- 849 *Accounts* (Global Footprint Network, Oakland, 2019)

850 Acknowledgments

- 851 Financial support from the National Key Basic Research Program of China
- 852 (2016YFC0402102) and National Natural Science Foundation of China (No.
- 853 51721006) is appreciated.

854 Author contributions

- 855 J.R.N. designed the research. Y.C.W. and X.B.C. performed the research. Y. C.W.,
- 856 X.B.C., J.R.N., and A.G.L.B. wrote the paper. T.H.L., H.H.L., S.F.Y., J.H.X., and C.M.Z.
- 857 contributed new ideas and information. All of the authors contributed to interpretation
- 858 of the findings.

859 **Competing interests**

860 The authors declare no competing interests.

861 Materials & Correspondence

- 862 Correspondence and requests for materials should be addressed to J.R.N. (e-mail:
- 863 jinrenni@pku.edu.cn)

865 Figure legends

866

867 Fig. 1: Hierarchical framework for assessing sustainability of Global Golden

868 Inland Waterways (GIWs). The framework integrates three primary sectors, i.e.

- 869 GIWs exploitation, riverine ecosystems, and regional development. First, the stage of
- 870 development for each of the GIWs is primarily determined from the regional
- 871 development sector. Second, regional development would stimulate waterway
- transport need and require expansion in bearing capacity of specific GIWs. Third, the
- 873 exploitation ratio is identified in the GIWs exploitation sector for the goal of regional
- 874 development, but should not exceed a certain threshold due to ecological

considerations. Fourth, ecological pressure from engineering practice is assessed in
the riverine ecosystem sector to maintain the fundamental ecological services for
regional development. Finally, sustainability of GIWs is estimated in terms of the
metrics from the three sectors.

Fig. 2: Identification and global distribution of golden inland waterways. a, Nine

892 Fig. 3: Development paths of nine representative GIWs. In each of the nine sub-

893 graphs, dynamic changes are shown of bearing capacity (*BC*, Mt yr⁻¹), transport need 894 (*N*, expressed as freight transport volume, Mt yr⁻¹), and consistency index ($CI = 0 \sim 1$,

defined as the ratio of *N* to *BC*). These include a~f, the L-L pattern represented by
Mississippi, Rhine, Volga, Yangtze, Pearl, and Amazon, respectively; g, the M-L
pattern represented by Ganges; h, the L-M pattern by Rhone; and i, the M-M pattern
by Congo. Blue and yellow lines denote the evolution of *N* and *BC*, respectively,
whereas black dots indicate the trend of *CI*. Source data are provided as a Source Data
file.

902 Fig. 4: Exploitation ratio (ER) and threshold of representative GIWs. ER (%) is

903 the ratio of actual bearing capacity to idealized bearing capacity. **a** and **b**, basin-

904 average *ER* of various GIWs (small letters a-i, corresponding to the nine waterways in

Fig.3) at different development stages in terms of 2015 GDP per capita (in 2010 US\$)

906	and industrialization stage in 2015, respectively. The two turning points (TPI, TPII)
907	separating the three stages are marked by red hollow circles. GIWs at the developed
908	stage after the TPII show diverse ER (58% ~ 100%) as the consequences of different
909	development strategies (A, radical; B, moderate; and C, conservative). c, freight
910	volume growth rate (%) under varying ER for six typical GIWs; and d , proportion of
911	reaches with different levels of ecological status, corresponding to varying ER from
912	134 reaches of six European GIWs. Source data are provided as a Source Data file.
913	

Relationship between: a, exploitation ratio (*ER*) and fragmentation index (*FI*). b, *ER*and wetland dis-connectivity index (*WDI*). c, *ER* and fraction of impervious surfaces
(*FIS*). d, *ER* and flow disruption index (*FDI*). e, *ER* and proportion of non-native fish
(*PNF*). f, *ER* and fish richness index (*FRI*). The arrows indicate critical values of the
metrics as *ER* approaches 80% presented by typical GIWs. Stage I, II, and III

921 corresponds to the initial, developing, and developed stage of GIWs, respectively.

922 Source data are provided as a Source Data file.

924 Fig. 6: Global distribution of sustainability index (SI) and corresponding

929 Source data are provided as a Source Data file.