77 research outputs found

    Recovery of the herbaceous layer in the young silver birch and black alder stands that developed spontaneously after a forest fire

    Get PDF
    The studies, which were conducted in southern Poland, focused on the recovery of the herb layer in 17-year-old post-fire silver birch and black alder forests. Although both types of stands, which are of the same age, developed spontaneously, the alder stands occupied damper sites (with thicker A horizons that survived the fire) than those in the birch forests. We surveyed the migration rates of 44 woodland species, primarily ancient woodland indicators, into both forests and the potential differences in these rates depending on their moisture regime and the community type represented by unburned forests, which were treated as the source of the woodland species pool. Additionally, the role of local depressions with high humidity that were covered by post-fire alder woods in the colonization process, as well as species survivorship and recolonisation, were estimated. Woodland species showed diverse migration paces among the sites; most of them migrated faster on more fertile sites with a higher humidity. Small patches of post-fire alder woods contributed to the recolonisation process since many woodland species in the herb layer survived the fire due to its high humidity, which inhibited the intensity of the forest fire. The recovery of woodland species in post-fire woods is the combined effect of regeneration, which relies on autochthonic propagules, and secondary succession, which is based on allochthonic propagules. Local depressions, which provide refuges for fire-sensitive, dispersal-limited species, contribute to their survivorship and thus to the successive recovery of herbaceous layers after a fire

    The effects of stand characteristics on the understory vegetation in Quercus petraea and Q. cerris dominated forests

    Get PDF
    The shelterwood system used in Hungary has many effects on the composition and structure of the herb layer. The aim of our study was to identify the main variables that affect the occurence of herbs and seedlings in Turkey oak-sessile oak (Quercus cerris and Q. petraea) stands. The study was carried out in the BĂŒkk mountains, Hungary. 122 sampling plots were established in 50-150 year old oak forests, where we studied the species composition and structure of the understorey and overstorey. The occurence of herbs was affected by canopy closure, the heterogenity and patchiness of the stand, the slope and the east-west component of the aspect. The composition of saplings was significantly explained by the ratio of the two major oak species in the stand and the proximity of the adult plants. An important result for forest management was that sessile oaks were able to regenerate almost only where they were dominant in the overstorey

    How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities

    Get PDF
    There are several community-based bioindicator systems that use species presence or abundance data as proxies for environmental variables. One example is the Ellenberg system, whereby vegetation data are used to estimate environmental soil conditions. Despite widespread use of Ellenberg values in ecological research, the correlation between bioindicated values and actual values is often an implicit assumption rather than based on empirical evidence. Here, we correlate unadjusted and UK-adjusted Ellenberg values for soil moisture, pH, and nitrate in relation to direct environmental measures for 50 woodland sites in the UK, which were subject to repeat sampling. Our results show the accuracy of Ellenberg values is parameter specific; pH values were a good proxy for direct environmental measures but this was not true for soil moisture, when relationships were weak and non-significant. For nitrates, there were important seasonal differences, with a strong positive logarithmic relationship in the spring but a non-significant (and negative) correlation in summer. The UK-adjusted values were better than, or equivalent to, Ellenberg’s original ones, which had been quantified originally for Central Europe, in all cases. Somewhat surprisingly, unweighted values correlated with direct environmental measures better than did abundance-weighted ones. This suggests that the presence of rare plants can be highly important in accurate quantification of soil parameters and we recommend using an unweighted approach. However, site profiles created only using rare plants were inferior to profiles based on the whole plant community and thus cannot be used in isolation. We conclude that, for pH and nitrates, the Ellenberg system provides a useful estimate of actual conditions, but recalibration of moisture values should be considered along with the effect of seasonality on the efficacy of the system

    Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK)

    Get PDF
    Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species’ geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies
    • 

    corecore