30 research outputs found

    First Data Release of the Hyper Suprime-Cam Subaru Strategic Program

    Full text link
    The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.Comment: 34 pages, 20 figures, 7 tables, moderate revision, accepted for publication in PAS

    The Hyper Suprime-Cam SSP survey: Overview and survey design

    Get PDF
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey

    MICA/B expression in macrophage foam cells infiltrating atherosclerotic plaques

    Get PDF
    Infiltrating macrophages accumulate in fatty streak lesions and transform into foam cells, leading to the formation of atherosclerotic plaques. Inflammatory mechanisms underlying the plaque formation mediated by NKG2D-positive lymphocytes such as CD8(+) T cells, natural killer cells and natural killer T cells have been extensively investigated. Yet, the involvement of the NKG2D system itself remains poorly understood. Recent work in mouse models has shown that blockade of an NKG2D receptor ligand interaction reduces plaque formation and suppresses inflammation in aortae. In this study, we conducted immunohistochemical analysis of NKG2D ligand expression in autopsy-derived aortic specimens. Foam cells expressing NKG2D ligands MICA/B were found in advanced atherosclerotic lesions accompanied by a large necrotic core or hemorrhage. Human monocyte-derived macrophages treated in vitro with acetylated low-density lipoproteins enhanced expression of MICA/B and scavenger receptor A, thus accounting for NKG2D ligand expression in foam cells infiltrating atherosclerotic plaques. Our results suggest that, as in mice, the NKG2D system might be involved in the development of atherosclerosis in humans. (C) 2014 Elsevier Inc. All rights reserved

    Excitation-Wavelength-Dependent Functionalities of Temporally Controlled Sensing and Generation of Singlet Oxygen by a Photoexcited State Engineered Rhodamine 6G-Anthracene Conjugate

    Get PDF
    The present study provides design guidance for unique multipotent molecules that sense and generate singlet oxygen (O-1(2)). A rhodamine 6G-aminomethylanthracene-linked donor-acceptor molecule (RA) is designed and synthesized for demonstrating wavelength-dependent functionalities as follows; (i) RA acts as a conventional fluorogenic O-1(2) sensor molecule like the commercially available reagent, singlet oxygen sensor green (SOSG), when it absorbs ultraviolet (UV)-visible light and reacts with O-1(2). (ii) RA acts as a temporally controlled O-1(2) sensing reagent under the longer wavelength (similar to 700 nm) photosensitization. RA enters an intermediate state after capturing O-1(2) and does not become strongly fluorescent until it is exposed to UV, blue, or green light. (iii) RA acts as an efficient photosensitizer to generate O-1(2) under green light illumination. The spin-orbit charge transfer mediated intersystem crossing (SOCT-ISC) process achieves this function, and RA shows a potential cancer-killing effect on pancreatic cancer cells. The wavelength-switchable functionalities in RA offer to promise molecular tools to apply O-1(2) in a spatiotemporal manner

    Anchorage-dependent multicellular aggregate formation induces CD44 high cancer stem cell-like ATL cells in an NF-kappa B- and vimentin-dependent manner

    Get PDF
    Adult T-cell leukemia/lymphoma (ATL) is an intractable T-cell malignancy accompanied by massive invasion of lymphoma cells into various tissues. We demonstrate here that ATL cells cultured on a layer of epithelial-like feeder cells form anchorage-dependent multicellular aggregates (Ad-MCAs) and that a fraction of MCA-forming ATL cells acquire CD44 high cancer stem cell-like phenotypes. ATL cells forming Ad-MCAs displayed extracellular microvesicles with enhanced expression of CD44v9 at cell synapses, augmented expression of multidrug resistance protein 1, and increased NF-kappa B activity. Blockade of the NF kappa B pathway dramatically reduced Ad-MCA formation by ATL cells and the emergence of CD44 high ATL cells, but left a considerable number of ATL cells adhering to the feeder layer. Disruption of vimentin cytoskeleton by treatment with withaferin A, a natural steroidal lactone, suppressed not only the adhesion of ATL cells to the feeder layer but also subsequent Ad-MCA formation by ATL cells, suggesting the involvement of vimentin in anchoring ATL cells to the feeder layer. Ad-MCA formation by ATL cells on a layer of epithelial-like feeder cells may mimic critical events that occur in metastatic colonization. (c) 2014 Elsevier Ireland Ltd. All rights reserved

    Excitation-Wavelength-Dependent Functionalities of Temporally Controlled Sensing and Generation of Singlet Oxygen by a Photoexcited State Engineered Rhodamine 6G-Anthracene Conjugate

    No full text
    The present study provides design guidance for unique multipotent molecules that sense and generate singlet oxygen (O-1(2)). A rhodamine 6G-aminomethylanthracene-linked donor-acceptor molecule (RA) is designed and synthesized for demonstrating wavelength-dependent functionalities as follows; (i) RA acts as a conventional fluorogenic O-1(2) sensor molecule like the commercially available reagent, singlet oxygen sensor green (SOSG), when it absorbs ultraviolet (UV)-visible light and reacts with O-1(2). (ii) RA acts as a temporally controlled O-1(2) sensing reagent under the longer wavelength (similar to 700 nm) photosensitization. RA enters an intermediate state after capturing O-1(2) and does not become strongly fluorescent until it is exposed to UV, blue, or green light. (iii) RA acts as an efficient photosensitizer to generate O-1(2) under green light illumination. The spin-orbit charge transfer mediated intersystem crossing (SOCT-ISC) process achieves this function, and RA shows a potential cancer-killing effect on pancreatic cancer cells. The wavelength-switchable functionalities in RA offer to promise molecular tools to apply O-1(2) in a spatiotemporal manner

    Visualising the dynamics of live pancreatic microtumours self-organised through cell-in-cell invasion

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) reportedly progresses very rapidly through the initial carcinogenesis stages including DNA damage and disordered cell death. However, such oncogenic mechanisms are largely studied through observational diagnostic methods, partly because of a lack of live in vitro tumour imaging techniques. Here we demonstrate a simple live-tumour in vitro imaging technique using micro-patterned plates (micro/nanoplates) that allows dynamic visualisation of PDAC microtumours. When PDAC cells were cultured on a micro/nanoplate overnight, the cells self-organised into non-spheroidal microtumours that were anchored to the micro/nanoplate through cell-in-cell invasion. This self-organisation was only efficiently induced in small-diameter rough microislands. Using a time-lapse imaging system, we found that PDAC microtumours actively stretched to catch dead cell debris via filo/lamellipoedia and suction, suggesting that they have a sophisticated survival strategy (analogous to that of starving animals), which implies a context for the development of possible therapies for PDACs. The simple tumour imaging system visualises a potential of PDAC cells, in which the aggressive tumour dynamics reminds us of the need to review traditional PDAC pathogenesis
    corecore