12 research outputs found

    Structural basis for arginine glycosylation of host substrates by bacterial effector proteins

    Get PDF
    The bacterial effector proteins SseK and NleB glycosylate host proteins on arginine residues, leading to reduced NF-κB-dependent responses to infection. Salmonella SseK1 and SseK2 are E. coli NleB1 orthologs that behave as NleB1-like GTs, although they differ in protein substrate specificity. Here we report that these enzymes are retaining glycosyltransferases composed of a helix-loop-helix (HLH) domain, a lid domain, and a catalytic domain. A conserved HEN motif (His-Glu-Asn) in the active site is important for enzyme catalysis and bacterial virulence. We observe differences between SseK1 and SseK2 in interactions with substrates and identify substrate residues that are critical for enzyme recognition. Long Molecular Dynamics simulations suggest that the HLH domain determines substrate specificity and the lid-domain regulates the opening of the active site. Overall, our data suggest a front-face SNi mechanism, explain differences in activities among these effectors, and have implications for future drug development against enteric pathogens

    Reversibly controlled ternary polar states and ferroelectric bias promoted by boosting square???tensile???strain

    Get PDF
    Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, we report deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO3, which boosts square-tensile-strain to BaTiO3 and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti3+ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, we experimentally demonstrate that three electrically controlled polar-ordering states lead to switchable and non-volatile dielectric states for application of non-destructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates

    Parental Attachment and Bullying in South Korean Adolescents: Mediating Effects of Low Self-Control, Deviant Peer Associations, and Delinquency

    No full text
    Utilizing a nationally representative, longitudinal South Korean student sample, the current study explores two pathways leading to bullying: (a) parental attachment to low self-control and (b) low self-control to deviant peer associations. Data for the study were derived from the Korean Youth Panel Study, and the study sample consisted of fourth graders in 2004 and eighth graders in 2008, producing three waves of data. Structural equation modeling was used to examine whether parental attachment (Wave 1), low self-control, deviant peer associations, and delinquency (Wave 2) were associated with bullying (Wave 3). Results suggest a significant indirect relationship between poor parental attachment and higher rates of bullying through low self-control. Implications for practice and research are also discussed

    Reversible Torsional Actuation of Liquid Crystal Elastomer Droplets

    No full text
    In nature, twisting motions of many organisms enable complex mechanical function such as swimming, crawling, climbing and energy storage. Liquid crystal elastomers (LCEs) are anisotropic polymeric materials which are promising candidates for the soft-actuator owing to their capability of stimuli-responsive properties. LCEs have attracted significant attention due to their possibility of designing structure of the polymer network by templating using the nematic director field. In this work, we report the highly reversible and fast three-dimensional torsional actuation of LCE droplet using heat. LCE droplet was obtained by simply mixing non-polymerizable mesogen and polymerizable mesogen. We further found that the anisotropic properties could be controlled by the chemical composition of LCE droplet, ratio of non-polymerizable and polymerizable mesogen. The simple and versatile method of twisting actuation of LCE droplet give us fundamental of shape control of LCE and design self-swimming particle and drug delivery system. This work was supported by the POSCO Science Fellowship of POSCO TJ Park Foundation and the Korea National Research Foundation (2021R1A4A1030944).2

    Determination of Internal Quality Indices in Oriental Melon Using Snapshot-Type Hyperspectral Image and Machine Learning Model

    No full text
    In this study, we aimed to develop a prediction model of the solid solutions concentration (SSC) and moisture content (MC) in oriental melon with snapshot-type hyperspectral imagery (Visible (VIS): 460–600 nm, 16 bands; Red-Near infrared (Red-NIR): 600–860 nm, 15 bands) using a machine learning model. The oriental melons were cultivated in a hydroponic greenhouse, Republic of Korea, and a total of 91 oriental melons that were harvested from March to April of 2022 were used as samples. The SSC and MC of the oriental melons were measured using destructive methods after taking hyperspectral imagery of the oriental melons. The reflectance spectrum obtained from the hyperspectral imagery was processed by the standard normal variate (SNV) method. Variable importance in projection (VIP) scores were used to select the bands related to SSC and MC. As a result, ten (609, 736, 561, 849, 818, 489, 754, 526, 683, and 597 nm) and six (609, 736, 561, 818, 849, and 489 nm) bands were selected for the SSC and MC, respectively. Four machine learning models, support vector regression (SVR), ridge regression (RR), K-nearest neighbors regression (K-NNR), and random forest regression (RFR), were used to develop models to predict SSC and MC, and their performances were compared. The SVR showed the best performance for predicting both the SSC and MC of the oriental melons. The SVR model achieved a relatively high accuracy with R2 values of 0.86 and 0.74 and RMSE values of 1.06 and 1.05 for SSC and MC, respectively. However, it will be necessary to carry out more experiments under various conditions, such as differing maturities of fruits and varying light sources and environments, to achieve more comprehensive predictions and apply them to monitoring robots in the future. Nevertheless, it is considered that the snapshot-type hyperspectral imagery aided by SVR would be a useful tool to predict the SSC and MC of oriental melon. In addition, if the maturity classification model for the oriental melon can be applied to fields, it could lead to less labor and result in high-quality oriental melon production

    Structural and Functional Characterizations of Cancer Targeting Nanoparticles Based on Hepatitis B Virus Capsid

    No full text
    Cancer targeting nanoparticles have been extensively studied, but stable and applicable agents have yet to be developed. Here, we report stable nanoparticles based on hepatitis B core antigen (HBcAg) for cancer therapy. HBcAg monomers assemble into spherical capsids of 180 or 240 subunits. HBcAg was engineered to present an affibody for binding to human epidermal growth factor receptor 1 (EGFR) and to present histidine and tyrosine tags for binding to gold ions. The HBcAg engineered to present affibody and tags (HAF) bound specifically to EGFR and exterminated the EGFR-overexpressing adenocarcinomas under alternating magnetic field (AMF) after binding with gold ions. Using cryogenic electron microscopy (cryo-EM), we obtained the molecular structures of recombinant HAF and found that the overall structure of HAF was the same as that of HBcAg, except with the affibody on the spike. Therefore, HAF is viable for cancer therapy with the advantage of maintaining a stable capsid form. If the affibody in HAF is replaced with a specific sequence to bind to another targetable disease protein, the nanoparticles can be used for drug development over a wide spectrum
    corecore