51 research outputs found
Interleukin 21 Is a T Helper (Th) Cell 2 Cytokine that Specifically Inhibits the Differentiation of Naive Th Cells into Interferon γ–producing Th1 Cells
The cytokine potential of developing T helper (Th) cells is directly shaped both positively and negatively by the cytokines expressed by the effector Th cell subsets. Here we find that the recently identified cytokine, interleukin (IL)-21, is preferentially expressed by Th2 cells when compared with Th1 cells generated in vitro and in vivo. Exposure of naive Th precursors to IL-21 inhibits interferon (IFN)-γ production from developing Th1 cells. The repression of IFN-γ production is specific in that the expression of other Th1 and Th2 cytokines is unaffected. IL-21 decreases the IL-12 responsiveness of developing Th cells by specifically reducing both signal transducer and activator of transcription 4 protein and mRNA expression. These results suggest that Th2 cell-derived IL-21 regulates the development of IFN-γ–producing Th1 cells which could serve to amplify a Th2 response
Sub millimetre flexible fibre probe for background and fluorescence free Raman spectroscopy
Using the shifted-excitation Raman difference spectroscopy technique and an
optical fibre featuring a negative curvature excitation core and a coaxial ring
of high numerical aperture collection cores, we have developed a portable,
background and fluorescence free, endoscopic Raman probe. The probe consists of
a single fibre with a diameter of less than 0.25 mm packaged in a
sub-millimetre tubing, making it compatible with standard bronchoscopes. The
Raman excitation light in the fibre is guided in air and therefore interacts
little with silica, enabling an almost background free transmission of the
excitation light. In addition, we used the shifted-excitation Raman difference
spectroscopy technique and a tunable 785 nm laser to separate the fluorescence
and the Raman spectrum from highly fluorescent samples, demonstrating the
suitability of the probe for biomedical applications. Using this probe we also
acquired fluorescence free human lung tissue data
Computational Fluorescence Suppression in Shifted Excitation Raman Spectroscopy
Fiber-based Raman spectroscopy in the context of <italic>in vivo</italic> biomedical application suffers from the presence of background fluorescence from the surrounding tissue that might mask the crucial but inherently weak Raman signatures. One method that has shown potential for suppressing the background to reveal the Raman spectra is shifted excitation Raman spectroscopy (SER). SER collects multiple emission spectra by shifting the excitation by small amounts and uses these spectra to computationally suppress the fluorescence background based on the principle that Raman spectrum shifts with excitation while fluorescence spectrum does not. We introduce a method that utilizes the spectral characteristics of the Raman and fluorescence spectra to estimate them more effectively, and compare this approach against existing methods on real world datasets.</p
Computational Fluorescence Suppression in Shifted Excitation Raman Spectroscopy
Fiber-based Raman spectroscopy in the context of <italic>in vivo</italic> biomedical application suffers from the presence of background fluorescence from the surrounding tissue that might mask the crucial but inherently weak Raman signatures. One method that has shown potential for suppressing the background to reveal the Raman spectra is shifted excitation Raman spectroscopy (SER). SER collects multiple emission spectra by shifting the excitation by small amounts and uses these spectra to computationally suppress the fluorescence background based on the principle that Raman spectrum shifts with excitation while fluorescence spectrum does not. We introduce a method that utilizes the spectral characteristics of the Raman and fluorescence spectra to estimate them more effectively, and compare this approach against existing methods on real world datasets.</p
Comparison of Group-based Outpatient Physiotherapy With Usual Care After Total Knee Replacement: a Feasibility Study For a Randomized Controlled Trial
Objective: To evaluate the feasibility of conducting a randomized controlled trial comparing group-based outpatient physiotherapy with usual care in patients following total knee replacement.
Design: A feasibility study for a randomized controlled trial.
Setting: One secondary-care hospital orthopaedic centre, Bristol, UK.
Participants: A total of 46 participants undergoing primary total knee replacement.
Interventions: The intervention group were offered six group-based exercise sessions after surgery. The usual care group received standard postoperative care. Participants were not blinded to group allocation.
Outcome measures: Feasibility was assessed by recruitment, reasons for non-participation, attendance, and completion rates of study questionnaires that included the Lower Extremity Functional Scale and Knee Injury and Osteoarthritis Outcome Score.
Results: Recruitment rate was 37%. Five patients withdrew or were no longer eligible to participate. Intervention attendance was high (73%) and 84% of group participants reported they were ‘very satisfied’ with the exercises. Return of study questionnaires at six months was lower in the usual care (75%) than in the intervention group (100%). Mean (standard deviation) Lower Extremity Functional Scale scores at six months were 45.0 (20.8) in the usual care and 57.8 (15.2) in the intervention groups.
Conclusion: Recruitment and retention of participants in this feasibility study was good. Group-based physiotherapy was acceptable to participants. Questionnaire return rates were lower in the usual care group, but might be enhanced by telephone follow-up. The Lower Extremity Functional Scale had high responsiveness and completion rates. Using this outcome measure, 256 participants would be required in
a full-scale randomized controlled trial
Procalcitonin Is Not a Reliable Biomarker of Bacterial Coinfection in People With Coronavirus Disease 2019 Undergoing Microbiological Investigation at the Time of Hospital Admission
Abstract Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11–1.70] ng/mL vs 0.24 [0.10–0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51–.60]).</jats:p
Implementation of corticosteroids in treating COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK:prospective observational cohort study
BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. FUNDING: UK National Institute for Health Research and UK Medical Research Council
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study
Background:
Microbiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19.
Methods:
The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded.
Findings:
We analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli and S aureus. Among patients with available data, 13 390 (37·0%) of 36 145 had received antimicrobials in the community for this illness episode before hospital admission and 39 258 (85·2%) of 46 061 patients with inpatient antimicrobial data received one or more antimicrobials at some point during their admission (highest for patients in critical care). We identified frequent use of broad-spectrum agents and use of carbapenems rather than carbapenem-sparing alternatives.
Interpretation:
In patients admitted to hospital with COVID-19, microbiologically confirmed bacterial infections are rare, and more likely to be secondary infections. Gram-negative organisms and S aureus are the predominant pathogens. The frequency and nature of antimicrobial use are concerning, but tractable targets for stewardship interventions exist.
Funding:
National Institute for Health Research (NIHR), UK Medical Research Council, Wellcome Trust, UK Department for International Development, Bill & Melinda Gates Foundation, EU Platform for European Preparedness Against (Re-)emerging Epidemics, NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, and NIHR HPRU in Respiratory Infections at Imperial College London
- …