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Computational Fluorescence Suppression in
Shifted Excitation Raman Spectroscopy

Nia C. Jenkins, Katjana Ehrlich, András Kufcsák, Stephanos Yerolatsitis, Susan Fernandes, Irene Young,
Katie Hamilton, Harry A. C. Wood, Tom Quinn, Vikki Young, Ahsan R. Akram, James M. Stone, Robert R.

Thomson, Keith Finlayson, Kevin Dhaliwal, Sohan Seth

Abstract— Fiber-based Raman spectroscopy in the con-
text of in vivo biomedical application suffers from the pres-
ence of background fluorescence from the surrounding
tissue that might mask the crucial but inherently weak
Raman signatures. One method that has shown potential
for suppressing the background to reveal the Raman spec-
tra is shifted excitation Raman spectroscopy (SER). SER
collects multiple emission spectra by shifting the excitation
by small amounts and uses these spectra to computation-
ally suppress the fluorescence background based on the
principle that Raman spectrum shifts with excitation while
fluorescence spectrum does not. We introduce a method
that utilizes the spectral characteristics of the Raman and
fluorescence spectra to estimate them more effectively, and
compare this approach against existing methods on real
world datasets.

Index Terms— Biomedical, Fluorescence, Lung Tissue,
Machine Learning, Optical Fiber, Raman Spectroscopy,
Regularization, Shifted Excitation, Sparsity, Smoothness,

I. INTRODUCTION

INTERVENTIONAL pulmonology is a sub-specialty of
pulmonary medicine that involves diagnostic or therapeutic

interventions to be undertaken by bronchoscopy involving
endoscopy of the trachea to access the endobronchial tree.
Recent developments in bespoke optical fibres now allows
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access to the distal lung through the working channel of a
bronchoscope to perform precise microscopic optical imaging
and spectroscopy for assessing the physiological and molecu-
lar signatures of tissue [1]. This is a promising approach for
intra-procedural tumor tissue delineation with a translational
drive that is motivated by relatively low-cost systems, mini-
mally invasive instrumentation, use of non-ionizing radiation,
and real-time continuous data acquisition leading to improved
tissue characterisation and diagnostic performance [2] [3].

While fiber-based fluorescence spectroscopy techniques are
currently making the transition from bench-to-bedside, Raman
spectroscopy (RS) is heralded as a promising candidate for
translation into clinics. Raman spectroscopy is a molecular
spectroscopy technique offering high chemical sensitivity and
specificity as well as the advantage of rapid and label-free
(i.e., without tagging the molecule of interest) analysis. It
investigates the inelastic scattering of light from a sample
when excited with monochromatic light and allows unique
structural fingerprinting of molecules to be explored. Current
research has explored RS in several organs such as the colon
[5], lung [6], cervix [7] and Barrett’s oesophagus [8] and it is
observed that there are characteristic differences between the
Raman spectra of normal and abnormal tissue [9].

Raman scattering is, however, inherently weak and, espe-
cially for in vivo applications, the Raman signal is masked by
the Raman background from the optical fiber used to reach
remote areas of the human body and the autofluorescence
of the surrounding tissue. Fiber-based spectroscopy relies on
carrying the excitation light through the fiber, and as the
excitation light propagates within the fiber, it generates a
Raman scattering that is directly proportional to the fiber
length [10]. Recent advancements in the use of hollow-core
negative-curvature optical fibers (NCFs) where light is guided
in air, instead of e.g. fused-silica optical fibers, minimizes
the interactions of light with the silica of the fiber core
significantly allowing strong Raman signatures to be identified
[4]. Yet the intensity of the fluorescence of the surrounding
tissue is often several orders of magnitude larger than the
Raman signal [11], and may still mask the relatively weak
characteristic peaks of the Raman spectrum that are crucial
for downstream analysis (see Fig. 1).

Several methods exist to reduce background fluorescence in
Raman measurements, and they can be broadly categorized
into two groups, i.e., technological and computational. Tech-
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Fig. 1: The figure shows the experimental set-up for SER. From left to right, the plots show the change in excitation due to
change in TEC setting; representative Raman, fluorescence and fiber Raman background spectra; the observed spectra due to
change in excitation; and inferred Raman and fluorescence spectra after fluorescence suppression. The experimental set up is
similar to that of Yerolatsitis et al. [4]. The arrows along hollow-core fiber show the direction of light through the system.

nological methods involve instruments designed to remove
the fluorescence from measurements, for example time-gating
[12][13][14] and frequency-domain methods [11] but they are
often costly and require highly specified instrumentation. On
the other hand, computational techniques involve statistical
models to suppress fluorescence from measurements, for ex-
ample polynomial fitting procedure [15] and least squares
methods [16], but they often do not perform well in low signal-
to-noise ratio environments and may require careful parameter
selection.

A promising compromise between the two approaches is
shifted excitation Raman spectroscopy (SER). The principles
of SER are founded on Kasha’s rule and Stokes shift. Kasha’s
rule states that the fluorescence emission is unaffected by
a small change in excitation wavelength [17], while Stokes
shift dictates that the Raman spectrum shifts by the same
amount in wavenumber as the shift in excitation. SER collects
multiple emission spectra by shifting the excitation by small
amounts and uses statistical tools to separate these spectra into
fluorescence and Raman components. Existing approaches for
separating these two spectra, however, are sub-optimal since
they do not explicitly utilize their spectral characteristics.

Our objectives are to, 1) perform a literature survey to
review existing methods of removing fluorescence based on
statistical and machine learning tools (section II), 2) present
an algorithm that utilizes the underlying structure of fluores-
cence and Raman signals as prior information to effectively
estimate them from observed spectra (section III), 3) compare
existing methods and the proposed approach on real reference
datasets as well as human lung tissue data over several diverse
evaluation metrics (section IV), 4) present a Python package
implementing these tools to underpin reproducibility.

II. EXISTING APPROACHES

We denote a function over wavenumber ν̃ by lower case
letters, e.g., x(ν̃), where wavenumber in cm−1 is the number
of wavelengths (λ in nm) in unit length or ν̃ = 107/λ. We
denote the column vector holding the values of the function

at N wavenumbers with lower case bold letters, e.g., x =
[x(ν̃1), . . . , x(ν̃N )]> where ·> denotes transpose. We denote
the n-th entry of the vector x using lower case letters, i.e., xn
which is equivalent to x(ν̃n). We denote matrices using upper
case bold letters, e.g., X, and the (i, j)-th entry of the matrix
as xij . We denote the n-th column of the matrix X as xn,
i.e., X = [x1, . . . ,xN ].

Let r(ν̃) and f(ν̃) denote the Raman and fluorescence
(also referred to as background in this context) spectrum
respectively, and let y(k) denote the k-th observed spectrum
in SER where each observed spectrum is acquired by shifting
the excitation by a small amount ∆ν̃k (∆ν̃1 = 0 for the first
excitation). Each observed spectrum can be described (in a
noise-free situation) as a combination of the underlying Raman
and fluorescence spectra, i.e.,

y(k)(ν̃) = r(ν̃ −∆ν̃k) + f(ν̃). (1)

We assume that each observed spectrum is acquired at N
equispaced wavenumbers ν̃n with n ∈ {1, . . . , N}, and that
shifting the excitation by ∆ν̃k in wavenumbers is equivalent
to shifting it by ∆nk indices, i.e,

r(ν̃n −∆ν̃k) = r(ν̃n−∆nk
). (2)

However, ∆nk for k ∈ {1, . . . ,K} where K is the total
number of excitations or shifts (counting ∆n1 = 0 as a shift)
do not have to be contiguous. Collecting the values of the
spectra in vectors, we can express Eq. (1) as

yk = L(∆nk)r + f (3)

where yk = [y(k)(ν̃1), . . . , y(k)(ν̃N )]> ∈ RN is the column
vector of the k-th observed spectrum, L(∆nk) ∈ RN×N is a
lower shift matrix that shifts the vector r by ∆nk indices, i.e.,

l
(∆nk)
ij =

{
1 if i = j + ∆nk

0 otherwise,
(4)

and r ∈ RN and f ∈ RN are the vectors of the Raman and
fluorescence spectra respectively. Fluorescence suppression in
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TABLE I: Summary of existing fluorescence suppression methods and their applications.

Paper Method Parameter Initialization K Experimental Conditions Samples

Zhang et al. [15] AIRPLS Background smoothing 1
BWTEK i-Raman-785
Excitation: 785 nm
Acquisition time: 5-7.5 s

Prednisone acetate and
glibenclamide tablets

Gebrekidan et al. [18] RSERDS

Center line estimate
smoothing,
ALS smoothing,
ALS asymmetry

2

Dual fiber Raman probe
design with distal end optics
Excitation: 784-785 nm
Power: 100 mW
Acquisition time: 10 s

Ex vivo pig tissue and
human oral tissue

Mazilu et al. [19] PCA

Free space Raman microscope
Excitation: 784.96-785.04 nm
Power: 5 mW
Acquisition time: 10 s

Polystyrene

McCain et al. [20] PIP Max. iterations fn = mink ynk

rn = estimate given f
8

Multicore fiber Raman probe
Excitation: 782.6-794.3 nm
Power: 5-50 mW
Acquisition time: 128 s

Dye dissolved in ethanol

Cooper et al. [21] PIP Max. iterations fn = mink ynk

rn = stdk ynk
4

Free space Raman microscope
Excitation: 784.6-785.3 nm
Power: 50 mW
Acquisition time: 3-141 s

Dimethyl gloxime,
acenaphthylene, 4-bromo-N,
N-dimethylaniline

Marshall and Cooper [22] PIP Max. iterations fn = mink ynk

rn = maxk ynk
32

Free space Raman microscope
Excitation: 849.68-852 nm
Acquisition time: 320 s

Laser dye

Mørup et al. [23] SNMF Random 9 Simulation
Mørup et al. [24] SICA Random 10 Simulation

Proposed MSERS
Raman sparsity,
fluorescence smoothing

fn = mink ynk

rn = stdk ynk
10

Multicore fiber Raman probe
Excitation: 783.8-785.4 nm
Power: 20 mW
Acquisition time: 100-500 s

Cyclohexane,
sesame oil, and
lung tissue

SER addresses the problem of estimating the Raman spectrum
r given K noisy spectra collected at different shifted exci-
tations. The available methods for fluorescence suppression
(in Raman spectroscopy) can be broadly divided into three
categories based on how many shifted measurements are
considered by the method. Table I summarizes these methods.

A. Single spectrum

Adaptive iteratively reweighted penalized least squares
(AIRPLS) estimates the fluorescence recursively from a single
spectrum y and subtracts it from the observed spectrum
to estimate the Raman spectrum [15]. At each iteration,
i, AIRPLS updates the estimated fluorescence f [i] by min-
imizing minf

∑N
n=1 w

[i]
n (yn − fn)

2
+ λ

∑N
n=2 (fn − fn−1)

2

where the first term accounts for the fidelity to the observed
spectrum while the second term accounts for the smoothness of
the estimated spectrum, and a large λ increases the smooth-
ness. Starting with w[0] = 1, in the subsequent iterations,
the weights w[i]

n = 0 for yn > f
[i]
n are chosen to gradually

ignore the peaks, and w
[i]
n = exp (i(yn − f [i−1]

n )/
∣∣d[i]

∣∣) for
yn < f

[i−1]
n are chosen to learn the baseline or fluorescence,

where d
[i]
n = (yn − f

[i]
n )−. The estimated fluorescence f

is then subtracted from y to obtain the Raman spectrum
r. AIRPLS is able to adequately eliminate fluorescence to
recover Raman spectra with large peaks, i.e., high signal-to-
noise ratio. However, it is unable to differentiate between noise
and the Raman spectrum under low signal-to-noise ratio, and

the estimated Raman spectrum is usually noisy due to not
modeling the Raman spectrum explicitly but only implicitly
through fluorescence subtraction.

B. Two spectra

Shifted-excitation Raman difference spectroscopy (SERDS)
uses two emission spectra y1 and y2 and estimates the Raman
spectrum by first constructing the difference spectrum e =
y1 − y2 = r − L(∆n2)r and then constructing the Raman
spectrum recursively as ri+∆n2

= ri + ei+∆n2
with r1 =

. . . = ri+∆n2−1 = 0. In the presence of noise and differences
in relative intensities due to photobleaching, however, further
corrections are required. For example, Gebrekidan et al. [18]
propose an algorithm with the following steps to address
these situations: first, perform z-score normalization to ensure
that the intensities of the two spectra are equivalent before
subtracting them, second, zero-center the difference spectrum
using asymmetric least squares (ALS) to minimize the effect
of left-over background before estimating the Raman spectrum
from the difference spectrum, and third, correct baseline of
the reconstructed Raman spectrum further using piecewise
ALS. We refer to this algorithm as RSERDS (Reconstruction
of SERDS). Subtracting two noisy signals, however, increases
the noise in the estimated difference spectrum. We observe that
the estimated Raman peaks are usually broader using RSERDS,
and the estimated spectrum may contain artefacts potentially
due to its heuristic parameter selection.
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C. Multiple spectra
A commonly used method for obtaining the Raman dif-

ference spectrum from SER is principal component analysis
(PCA). Here the intuition is that the direction of maximum
variance, i.e., the largest eigenvector of the covariance matrix
C =

∑K
k=1(yk − ȳ)(yk − ȳ)> where ȳ is the average

spectrum, corresponds to the difference spectrum, and the
peak location can be determined through zero-crossings of
this spectrum [25, p. 13687]. PCA is fast and does not
require any parameter selection or the shifts, i.e., ∆nks to
be known. However, it is difficult to reconstruct the Raman
signal from the difference spectrum [21]. Although this is
applied in biological applications [25]–[27], we observed that
it is often difficult to determine the peak locations from the
estimated spectrum. We refer to this approach as PCA. A more
principled approach for estimating the Raman spectrum from
SER is treating it as a latent variable and using probabilistic
modeling to infer this latent spectrum from observed spectra
as an inverse problem.

1) Poisson inverse problem: McCain et al. [20] observed
that Eq. (3) can be expressed as

vec(Y) ∼ Poisson(Hh) with H =

IN L(∆n1)

...
...

IN L(∆nK)


under the assumption of Poisson noise where Y =
[y1, . . . ,yK ] ∈ RN×K is the pooled data matrix, h =
[f>, r>]> ∈ R2N , and H ∈ RKN×2N is a known operator.
The authors proposed an expectation-maximization (EM) al-
gorithm to estimate h recursively using the Lucy-Richardson
formula as h[i+1] = h[i]◦

(
H>(vec(Y)� (Hh[i]))

)
/K where

i denotes iteration and ◦ and � represent element-wise multi-
plication and division respectively. We refer to this approach
as PIP. The authors found this approach to be more robust for
noisy observations when compared to other methods including
polynomial fitting and RSERDS [20, p. 10990]. Cooper et
al. [21] addressed the high-computational cost of multiplying
the H operator, and showed that this can be achieved more
efficiently due to the specific structure of the matrix. Although
PIP works well in practice, it does not take into account the
relative variation in intensities due to photobleaching and laser
output power variations explicitly, and we observe that the
estimated Raman spectrum may not be sparse.

2) Shifted matrix factorization: Mørup et al. [23], [24] ad-
dressed a generic problem of separating an arbitrary number
(M ) of shifted latent spectra with unknown shifts and weights,

yk =

M∑
m=1

akmL(∆nkm)rm. (5)

Mørup et al. proposed shifted nonnegative matrix factorization
(SNMF) to solve Eq. (5) under the normal noise model and
the assumption that rm > 0 [23] while Mørup et al. proposed
shifted independent component analysis SICA to solve Eq. (5)
under normal noise model and the assumption that rms are
independent [24]. The flexibility of these methods lie in
estimating unknown shifts which can also be non-integer
but this comes with additional computational complexity, and

although both methods have shown to correctly identify latent
spectra on synthetic data with unknown shifts, they have not
been applied on real datasets. This approach can be adapted
to fluorescence suppression by letting M = 2 with r1 = r and
r2 = f , and by letting ∆n2· = 0 to ensure fluorescence does
not vary over shifted excitations while ∆n1·s are known. To
differentiate the generic formulation from this specific one, we
refer to the latter as SNMF* and SICA* respectively. We observe
that although SNMF* can recover latent spectra adequately the
resulting Raman spectrum is not sparse, and SICA* often fails
to adequately recover the Raman spectrum since it can take
negative values even though independence between the two
spectra is a desired assumption.

III. PROPOSED APPROACH

While a number of principled approaches exist to suppress
fluorescence, they either do not exactly match our require-
ments or they do not utilize the spectral characteristics of
the spectra. For example: 1. AIRPLS and RSERDS do not use
multiple spectra, 2. PCA only finds the Raman difference spec-
trum, 3. PIP assumes that the relative intensities of fluorescence
and Raman do not change over shifted excitations, 4. while
SICA* models the relative intensities, it does not assume non-
negativity of the spectrum, 5. while SNMF* does both these,
it may not produce a sparse Raman spectrum, and 6. none of
the methods use the difference in the spectral characteristics of
the two spectra, i.e., while Raman spectrum comprises sharp
peaks, often intermittent but possibly overlapping, over a zero
baseline, the fluorescence spectrum varies smoothly, and it is
usually present over the entire region of interest.

To address these, we develop a method to 1. estimate the
spectra from more than 2 measurements, i.e., K ≥ 2, 2.
estimate the Raman spectrum, i.e., r, explicitly rather than
the difference spectrum 3. allow relative intensities of the
fluorescence, i.e., β, and Raman, i.e., α, to vary to accommo-
date the effect of photobleaching and variations in the laser
output power, and include a bias term, i.e., b, to account for
additive noise from the sensor (e.g. ‘dark current’) 4. use
regularization for both Raman and fluorescence spectra, i.e.,
λr and λf respectively, to encode their spectral characteristics,
i.e., Raman spectrum is ‘sparse’ and fluorescence spectrum is
‘smooth’, and finally, 5. use shifts reliably estimated from data
due to the presence of characteristic oxygen and nitrogen peaks
from NCF.

A common feature of subsequent Raman measurements
is photobleaching where fluorescence intensity reduces over
time due to sustained laser exposure [28]. Additionally, the
spectrometer can produce a small output signal even in the
absence of incident light, also known as dark current. To
accommodate these features, we extend Eq. (3) as,

yk = αkL
(∆nk)r + βkf + bk (6)

where α and β denote the intensities of the Raman and
fluorescence spectrum respectively, and b denotes the bias
term.

The sparsity of the Raman spectrum can be encoded in
several ways, and a typical solution is to minimize the `1
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norm of the spectrum. This approach does not capture the
complete spectral characteristics of the Raman spectrum, e.g.,
the local ‘smoothness’ in regions where the peaks appear, but
we observe that the `1 regularization distinguishes the Raman
spectrum from fluorescence well.

The smoothness of the fluorescence spectrum can also be
modeled in several ways, and a typical solution is to use
Tikhonov regularization as in AIRPLS. This can be described
as ‖Df‖ = f>D>Df , where D = I − L(1) is the differ-
ence matrix of size N × N . However, we observe that this
regularization might not sufficiently suppress the fluorescence
spectrum (see supp. I). We suggest using a more generalized
regularization of the form f>K

−1
f where K is a suitable

covariance matrix, e.g., knn′ = exp(−(n − n′)2/`2) where
` controls the smoothness of the covariance function. The
parameters of the covariance function can be optimized as
part of the optimization. However, for simplicity, we set it
to l = N/4. We also use a small regularization parameter
ε = 10−6 to avoid instability of the matrix during inversion,
i.e., the resulting regularization term is f>(K + εI)

−1
f .

We assume a normal noise model. We can use more flexible
distributions such as Poisson or negative binomial. However,
choosing a standard noise model simplifies the resulting op-
timization problem. Thus, we minimize the following loss
function to find (r, f ,α,β,b),

c =

K∑
k=1

∥∥∥yk − (αkL(∆nk)r + βkf + bk

)∥∥∥2

+ λf f
>K̃f + λr‖r‖1 (C)

where λf and λr are regularization parameters for the fluores-
cence and Raman spectrum respectively, and K̃ = (K+ εI)

−1

can be pre-computed. ‖ · ‖ and ‖ · ‖1 denote `2 and `1 norm.
We use Block Coordinate Descent (BCD) to minimize the

loss [29], i.e., we split the problem into K + 2 blocks, such
that at each iteration, the loss function for a specific block is
minimized while fixing the values of the other blocks, and we
repeat this over each block until convergence. The K+2 blocks
are the Raman spectrum r, the fluorescence spectrum, f , and
K triplets (αk, βk, bk) respectively. We update these blocks
using either non-negative least squares (NNLS) or non-negative
least absolute shrinkage and selection operator (NNLASSO).
NNLS solves minx≥0 ‖d−Cx‖2 [30] and NNLASSO solves
minx≥0 ‖d−Cx‖2 + λ‖x‖1 [31]. We express the quadratic
cost as x>Ax−2b>x, however, the two forms are equivalent
with C = CHOL(A) and d = (C)>

−1

b where CHOL denotes
Cholesky decomposition. We refer to this algorithm as multi-
spectral estimation of regularized spectra or MSERS (see
Algorithm 1 and supp. II for concise and detailed pseudocode).

a) Intensities and bias update: The (αk, βk, bk) values for
each k = 1, . . . ,K shifts are updated by solving the following
optimization,

min
αk,βk,bk≥0

∥∥∥yk − (αkL
(∆nk)r + βkf + bk)

∥∥∥2

. (7)

This is a NNLS optimization problem, i.e.,

min
x≥0
‖yk −Cx‖2 (P1)

Algorithm 1 MSERS

Input: Y, {∆nk}Kk=2, K̃, λr, λf , imax, tol
Require: Y ≥ 0

Initialize Raman r[0] and fluorescence f [0] spectra
i = 0, c[−1] = 0, c[0] = 0
while i ≤ imax & |c[i] − c[i−1]| ≥ tol× c[i−1] do
i = i+ 1
for k ∈ {1, . . . ,K} do

update (αk, βk, bk)[i] using Eq. (P1)
end for
update f [i] using Eq. (P2)
update r[i] using Eq. (P3)
update c[i] using Eq. (C)

end while
return (r, f ,α,β,b)

with C = [L(∆nk)r, f ,1] and x = [αk, βk, bk]>. L(∆nk)r
does not need to be computed explicitly through matrix
multiplication but the vector r can be shifted (supp. III).

b) Fluorescence update: The fluorescence f is updated by
solving the following optimization,

min
f≥0

∥∥∥yk − (αkL
(∆nk)r + βkf + bk)

∥∥∥2

+ λf f
>K̃f (8)

This can again be expressed as a NNLS optimization as

min
f≥0

K∑
k=1

∥∥∥yfk − βkf∥∥∥2

+ λf f
>K̃f ≡

min
f≥0

f>

[(
K∑
k=1

β2
k

)
I + λfK̃

]
f − 2

[
K∑
k=1

βky
f
k

]>
f (P2)

with yfk = yk − αkL(∆nk)r − bk. L(∆nk)r can be evaluated
efficiently by shifting r.

c) Raman update: The Raman r is updated by solving the
following optimization

min
r≥0

K∑
k=1

∥∥∥yk − (αkL
(∆nk)r + βkf + bk)

∥∥∥2

+ λr‖r‖1 (9)

This can be expressed as a NNLASSO optimization as

min
r≥0

K∑
k=1

∥∥∥yrk − αkL(∆nk)r
∥∥∥2

+ λr‖r‖1 ≡

min
r≥0

r>

[(
K∑
k=1

α2
k

)
I

]
r− 2

[
K∑
k=1

αky
r>
k L(∆nk)

]
r + λr‖r‖1

(P3)

where yrk = yk − βkf − bk. yr>k L(∆nk) can be evaluated
efficiently by shifting yrk.

d) Fiber Raman background: Although hollow-core NCFs
reduce the Raman background from the optical fibers sig-
nificantly, it is nonetheless present in the observed spectra
(see CYCLOHEXANE). Raman background shifts with shifts
in excitation similar to the Raman spectrum of interest, and
therefore it cannot be explicitly modeled as either f or r in
MSERS. However, we observe that MSERS can still remove this
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background effectively to reveal a Raman spectrum with zero
baseline since although this background (referred as g) shifts
with ∆nk, its relative smoothness allows it to be estimated as
fluorescence, i.e., f +L(∆nk)(g+r) ≈ (f +g)+L(∆nk)r over
sufficiently small ∆nk, and f + g is smooth.

e) Initialization and convergence: Following Marshall and
Cooper [22], we initialize the Raman spectrum with the
standard deviation across the raw spectra for each wavenumber
whilst the fluorescence spectrum is initialized as the mini-
mum value across the raw spectra for each wavenumber (see
supp. IV for other initializations). The algorithm is said to
converge if the relative change in loss between subsequent
iterations is at most tol = 10−3 and a maximum number of
iterations imax = 100 is set to manage the run-time.

f) Parameter selection: We express the regularization pa-
rameters as λ(·) = KN10−λ

e
(·) and select λef and λer using

internal validation. We run the algorithm for several parameter
values, i.e., λer ∈ {11, 10, 9, 8} and λef ∈ {12, 11, 10, 9, 8, 7}
and choose the solution with adequate sparsity (see IV-C.4)
and distinguishability. The distinguishability is calculated as
the inverse correlation (see IV-C.3) between the Raman and
fluorescence spectra. We choose the Raman spectrum with
moderate sparsity (between 0.3 and 0.7) that is most distin-
guishable from the fluorescence spectrum (see supp. V).

g) Estimating shifts: Although the shift in excitation can be
estimated explicitly through a second spectrometer, we instead
choose to estimate it through the emission spectra. The air
in the hollow-core NCF results in two distinct Raman peaks
at 1555 cm−1 and 2331 cm−1 (in Raman shift), (see Fig. 4)
due to the presence of oxygen and nitrogen in the air. These
characteristic peaks can be used to compute the excitation
wavelength and the shift in excitation. Although both peaks
provide similar estimation (see supp. VI), we used the oxygen
peak as after converting to wavenumber, the resolution of the
observed spectra around the oxygen peak is higher than around
the nitrogen peak. This inherent calibration step simplifies the
experimental set-up by eliminating the need to introduce a
second spectrometer and does not add further uncertainties
such as calibration and synchronization.

IV. EXPERIMENTS

A. Data Collection

The Raman spectra were taken using a custom-built optical
set-up which can be seen in Fig. 1. The system is designed
for shifted excitation wavelengths around 785 nm, utilizing the
lower autofluorescence presence in the near-infrared window
in biological tissue, and efficient coupling and collection into
the bespoke Raman fiber. A 785 nm laser diode (DBR785S,
Thorlabs; line width < 0.1 nm) was coupled with a thermo-
electric cooler (TEC) control. A change in temperature tunes
the wavelength of the laser diode to match different laser
cavity modes and hence allows access to a range of excitation
wavelengths. The average laser output power at the distal
end of the fiber is 20 mW but this varies slightly between
wavelengths. This results in different measured intensities over
shifts. The hollow-core NCF is used to transport light to the
sample whilst the surrounding multimode fibers collect the

Raman scattering from the sample. The collected Raman signal
is coupled via the dichroic mirror into a multimode patch
cable and fiber-fed to the spectrometer (QePro Raman, Ocean
Insight) which records the Raman spectra via the commercial
software OceanView (Ocean Insight) within the spectral range
of 840 nm to 992 nm (834 cm−1 to 2658 cm−1 in Raman shift
for excitation 785 nm). We investigated two reference samples,
CYCLOHEXANE and SESAME OIL, and ex vivo LUNG TISSUE
from human lung. For liquid compounds, the distal end of the
optical fiber was immersed in the compound but for tissue it
had direct contact with the surface.

1) Cyclohexane: Cyclohexane (1.02822, cyclohexane for
spectroscopy Uvasol®, Supelco, Merck KGaA) is a chemical
compound popular in Raman spectrometer calibration due to
its well known Raman spectrum and the fact that it has no
fluorescence background. An example observed spectrum of
cyclohexane is shown in Fig. 4 (left) (the background observed
in the figure is the Raman background from the fiber). It
is characterized by three large peaks of similar intensities
occurring around 1029 cm−1, 1267 cm−1 and 1445 cm−1. Addi-
tionally there is a less intense peak at 1158 cm−1 and a weaker,
broader peak at 1347 cm−1 [32, Table I].

2) Sesame oil: The Raman spectrum of sesame oil (Toasted
Sesame Oil 250mL, Tesco) has large, well known peaks but
also a high level of fluorescence background. An example
observed spectrum of sesame oil is shown in Fig. 4 (middle).
The Raman spectrum is characterized by two large peaks at
1441 cm−1 and 1657 cm−1 with smaller peaks at 1267 cm−1 and
1304 cm−1 creating a double peak and further small peaks at
1083 cm−1 and 1747 cm−1 [33, Table 1].

3) Lung tissue: An ex vivo human lung tissue sample
was obtained from a patient who was recruited from Royal
Infirmary of Edinburgh (NHS Lothian BioResource, reference
15/ES/0094), diagnosed with suspected or confirmed lung
cancer, undergoing thoracic resection surgery. Peripheral lung
tissue (>5 cm away from tumor margin) was obtained from the
resection sample. An example observed spectrum of tissue is
shown in Fig. 4 (right). Raman peaks from tissue are weak and
complex to interpret as the peaks can overlap. They are almost
completely masked by the strong autofluorescence of tissue.
Following Huang et al. [34, Fig. 5], we consider the following
eight peaks in our study at 1078 cm−1, 1265 cm−1, 1302 cm−1,
1445 cm−1, 1602 cm−1, 1618 cm−1, 1665 cm−1, and 1745 cm−1

where the first four and the last one are distinct sharp peaks
while the rest are overlapping peaks. We do not consider peaks
with intensity below that of the 1745 cm−1 peak as they may
be noisy and thus hard to detect, and we do not consider peaks
1518 cm−1, 1552 cm−1 and 1582 cm−1 due to their proximity
to the oxygen peak. While there is an additional sharp peak
at 855 cm−1, this peak is only partially observed since the
respective wavelength (between 839.79 nm and 841.96 nm for
different excitations) is close to our lower detection threshold
at 840 nm to 992 nm, and therefore, we exclude this peak from
the analysis.

B. Data Processing
Each measurement, for a shift k, consists of 1044 data

points, spanning a spectral range of 840 nm to 992 nm. The
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spectra were taken on a wavelength axis with unequal res-
olution, decreasing from 0.167 nm at lower wavelengths to
0.126 nm at longer wavelengths (see supp. VII). We first
convert the wavelengths to wavenumbers ν̃. The multi-spectra
algorithms feature a ‘shift’, i.e., ∆ν̃k, and applying a shift to
the uneven wavelengths will result in misalignment. Therefore,
we use linear interpolation to project the intensity values onto
an equispaced grid. The resolution of this grid is equal to the
highest resolution (smallest spacing) of the original uneven
grid. This changes the length of each spectrum to N = 1418.
The spectra were converted to Raman shifts δν̃ = ν̃ − ν̃0

for visualization and comparison with known characteristic
peak locations where ν̃0 is the first excitation wavelength
corresponding to ∆ν̃1 = 0.

For each sample, 14 temperature steps were set on the TEC
control. Due to modelocking conditions, not all steps resulted
in an excitation wavelength shift, and due to environmental
conditions, such as laboratory temperature changes, the exact
excitation wavelength positions were difficult to repeat. We
considered the first 10 spectra with lower TEC setting as the
higher TEC settings (with lower excitation wavelength) do not
necessarily enter a new modelock, i.e., K = 10. For each k, 10
repeated measurements were taken to avoid saturation of the
sensors with exposure time texp. We summed these repeated
measurements, i.e., the integration time is tint = 10texp and
the acquisition time is tacq = Ktint. For CYCLOHEXANE and
SESAME OIL, tacq = 10 s, and for LUNG TISSUE, tacq = 50 s.

We implement the algorithms in Python3. For MSERS we
use existing solvers for NNLS and NNLASSO, and existing peak
detection tools for estimating shifts. We set any small negative
values (i.e., ykn < 0) to 0 and normalize the pooled spectra
Y to be between 0 and 1. We apply the same initialization as
MSERS to PIP, SNMF* and SICA*, and randomly initialize akms
in SNMF* and SICA*. PCA, SNMF* and SICA* do not require
any parameter selection. For AIRPLS, the smoothing parameter,
λ, is incrementally increased from 1 and the resulting spectra
are plotted until the fluorescence does not feature any Raman
peaks. RSERDS involves tuning 3 parameters such that the
difference spectrum is sufficiently smooth and the Raman
spectrum is smooth with a zero baseline. This is done by
plotting the results with small values and increasing them until
the results are satisfactory. For PIP, the maximum number of
iterations is chosen to be 2000, as is used by Cooper et al.
[21, p. 979]. The peaks of the spectrum reconstructed with
RSERDS and the zero-crossings of the difference spectrum of
PCA may not align with the first observed spectrum as is the
case with the other algorithms. Therefore, these spectra have
been shifted by half of the maximum shift, to be in line with
the other spectra for comparison.

C. Evaluation metrics

1) Peak evaluation: We compare the peaks detected from
the estimated Raman spectrum with their respective true or
suggested locations (see section IV-A) in terms of precision,
i.e., number of true peaks detected over the total number of
peaks detected, and recall, i.e., number of true peaks detected
over the total number of true peaks. We count a true positive

Fig. 2: The figure shows the relative intensity of Raman
spectrum with respect to fluorescence spectrum intensity for
MSERS over progressive measurements. See section IV-D.1.

if the true peak location falls within the peak width of the
detected peak. Detected peaks are those peaks whose height
from the baseline is at least 5% of that of the oxygen peak
for CYCLOHEXANE and SESAME OIL, and nitrogen peak for
LUNG TISSUE, and the peak width is less than 200.

2) Signal-to-noise ratio: We quantify SNR in terms of the
ratio of the peak intensity (oxygen peak for CYCLOHEXANE
and SESAME OIL and nitrogen peak for LUNG TISSUE, both
from the baseline) and the standard deviation of a Raman
free, fluorescence only area. This region is taken as the
spectrum from 889 cm−1 to 942 cm−1 (in Raman shift) for
CYCLOHEXANE and 1150 cm−1 to 1200 cm−1 for SESAME OIL
and LUNG TISSUE.

3) Correlation: The fluorescence and Raman spectra should
be independent of each other since they follow different
generative mechanisms. Therefore, if the two spectra have
been separated adequately then we should expect a small
correlation between them. We quantify this using Pearson’s
correlation coefficient.

4) Sparsity: We expect the Raman spectra to be moderately
sparse, i.e., if the fluorescence has been suppressed adequately
then the resulting Raman spectrum should have intermittent
sharp peaks. We quantify this as the proportion of wavenum-
bers with intensity value less than 0.1% of the maximum
intensity value.

5) Run-time: We report the run-time of the algorithm, mea-
sured in seconds. We define run-time as the time it takes the
algorithms to run once for a given parameter setting. However,
this does not include the time for the user to adjust parameters
which would impact the total implementation time.

D. Results
1) Effect of photobleaching: MSERS explicitly captures

the effect of photobleaching where the relative intensity
of the Raman spectrum compared to the fluorescence
background vary over progressive measurements. Fig. 2
shows the ratio of Raman and fluorescence intensities, i.e.,
(αk maxn rn)/(βk maxn fn), in the order the measurements
were taken for each dataset. We observe an upward trend
for LUNG TISSUE indicating photobleaching while CYCLO-
HEXANE and SESAME OIL do not vary. This is expected
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Fig. 3: The figure shows the inferred Raman and fluorescence spectra from MSERS for different number of excitations K. The
inferred spectra progressively improve with increasing K. See section IV-D.2. a.u. is arbitrary unit.

TABLE II: The table summarizes the characteristics of spectra inferred using MSERS for different number of excitations. ↓ (↑)
implies that lower (higher) value is better. See section IV-D.2. Run-time is shown in seconds. # P. is number of detected peaks.

CYCLOHEXANE SESAME OIL LUNG TISSUE

K SNR↑ Corr.↓ Spar. # P. Prec.↑ Rec.↑ Time↓ [Itr] SNR↑ Corr.↓ Spar. # P. Prec.↑ Rec.↑ Time↓ [Itr] SNR↑ Corr.↓ Spar. # P. Prec.↑ Rec.↑ Time↓ [Itr]
2 72.1 0.291 0.301 57 0.088 1.0 378 [100] 34.0 0.388 0.371 113 0.053 1.0 361 [100] 23.6 0.344 0.353 128 0.055 0.875 37 [8]
4 80.3 0.312 0.309 15 0.333 1.0 51 [12] 74.9 0.480 0.321 31 0.194 1.0 233 [63] 55.4 0.354 0.646 23 0.217 0.625 39 [9]
6 107.9 0.306 0.341 7 0.714 1.0 46 [11] 103.8 0.467 0.408 18 0.333 1.0 250 [69] 88.2 0.237 0.587 22 0.273 0.750 109 [29]
8 99.8 0.319 0.348 7 0.714 1.0 48 [11] 92.7 0.448 0.453 8 0.750 1.0 193 [50] 149.7 0.257 0.662 9 0.556 0.625 63 [16]
10 120.9 0.338 0.382 6 0.833 1.0 47 [11] 135.9 0.452 0.497 8 0.750 1.0 269 [73] 198.9 0.264 0.677 8 0.625 0.625 92 [23]

for CYCLOHEXANE since it does not have any fluorescence.
SESAME OIL shows the lowest value indicating relatively high
presence of fluorescence compared to LUNG TISSUE.

2) Changing number of excitations: Although a higher K is
expected to infer better spectra, a lower K may be preferred
for in vivo applications to reduce data collection time and
motion artefacts, e.g., due to breathing. We assess if fewer
measurements can provide adequate accuracy. We compare
the performance of MSERS when changing the number of
excitations, K. We use K ∈ {2, 4, 6, 8, 10} where the spectra
are chosen to maximize the separation of the excitations (see
supp. VIII). Table II summarizes the key metrics for all K,
and Fig. 3 shows the estimated spectra. We observe that, both
qualitatively and quantitatively, the estimated spectra progres-
sively improve in signal-to-noise ratio as well as in precision
and recall for increasing K, however, 1) even K = 2 provides
effective fluorescence suppression, e.g., in CYCLOHEXANE,
and 2) K = 8 and K = 10 provide similar performance in
precision and recall for all datasets.

3) Comparison to existing methods: We use K = 10 for
comparison with other methods. Fig. 4 shows the inferred
spectra for different algorithms, and Table III summarizes their
characteristics. We observe that qualitatively MSERS provides a
‘peaky’-er Raman spectrum over zero baseline and a smoother
background spectrum. This is supported quantitatively by a rel-
atively higher sparsity and SNR compared to other approaches
and a relatively more accurate location of the peaks as well as
narrow peak widths (see supp. IX)). We observe that 1) AIRPLS
provides a relatively noisy Raman spectrum in terms of SNR
while RSERDS provides a broader Raman spectrum (see e.g.,
peaks in LUNG TISSUE), and both methods result in low

precision and recall. 2) PCA works well for CYCLOHEXANE
but performs poorly on the other datasets. 3) SICA* provides
uncorrelated spectra that can take negative values (see e.g.,
LUNG TISSUE). The rest of the methods work well in terms of
precision and recall, however, 4) MSERS provides better SNR
and sparsity than PIP and SNMF* (see e.g., SESAME OIL), and
Raman spectrum that is less correlated with the background.
(see e.g., SESAME OIL).

V. CONCLUSIONS

SER is an emerging technology with promising applications
in intra-operative real-time tumor delineation with the potential
to improve surgical resection accuracy and patients outcome
in the long term. Biomedical in vivo applications of SER
suffers from the presence of tissue background fluorescence
and background from Raman fiber that masks the weak
Raman peaks of interest. Existing computational tools for
suppressing fluorescence are inadequate for such applications
due to the low signal-to-noise ratio and photobleaching. In this
paper, we proposed a computational framework MSERS that
is more suitable for such applications. We demonstrated that
MSERS suppresses fluorescence and recovers Raman spectra
more effectively than existing approaches, both qualitatively
and quantitatively, by capturing the effect of photobleaching,
modeling the fluorescence as a smooth spectrum, and modeling
the Raman spectrum to be sparse. The computational efficacy
of MSERS along with recent technological development in
sources such as laser diodes could pave the way for clinical
deployment of this technology in the near future.
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Fig. 4: The figures shows the observed, standard and inferred spectra for different fluorescence suppression methods. One
observed spectrum (obs.) (k = 1) is shown for better visibility. Tissue spectra have been scaled to diminish the oxygen peak to
focus on tissue peaks. The known and suggested peak locations are shown with gray vertical dotted lines while the oxygen and
nitrogen peaks are shown with red and blue vertical dotted lines respectively. Standard spectra (std.) (except LUNG TISSUE)
are collected with an inVia™ confocal Raman microscope (Renishaw plc.); spectra are taken without a fiber probe element
and Raman spectra extracted using Wire™ 4.4 software (Renishaw plc.). See section IV-D.3.

TABLE III: The table summarizes the performance of fluorescence suppression methods. ↓ (↑) implies that lower (higher) value
is better. unk is unknown and i/d is indistinguishable. # P. is number of detected peaks. See section IV-D.3.

Peak Location ± Width/2 (cm−1) SNR↑ Corr.↓ Spar. # P. Prec.↑ Rec.↑ Time↓

C
Y

C
L

O
H

E
X

A
N

E

True 1029±unk 1158±unk 1267±unk 1347±unk 1445±unk
AIRPLS 1028±36 1159±33 1270±34 1343±21 1442±42 24.8 0.153 0.009 156 0.032 1.000 0.091
RSERDS 1030±33 1157±53 1267±30 1345±28 1445±40 38.1 0.072 7 0.714 1.000 0.347

PCA 1031±75 1159±28 1270±55 1350±26 1446±60 0.025 282 0.018 1.000 0.001
PIP 1030±44 1159±18 1268±36 1349±20 1445±40 192.3 0.356 0.059 6 0.833 1.000 1.899

SNMF 1030±36 1159±19 1268±40 1349±20 1445±40 152.3 0.556 0.010 6 0.833 1.000 15.693
SICA 1029±32 1159±17 1268±29 1350±20 1445±43 38.3 0.300 0.006 45 0.111 1.000 42.964

MSERS 1030±28 1159±17 1268±35 1350±11 1445±37 120.9 0.338 0.382 6 0.833 1.000 47.390

S
E

S
A

M
E

O
IL

True 1083±unk 1267±unk 1304±unk 1441±unk 1657±unk 1747±unk
AIRPLS 1078±15 1270±15 1300±47 1435±24 1660±18 1750±3 12.6 0.239 0.011 183 0.033 1.000 0.012
RSERDS 1076±45 1271±19 1302±29 1441±36 1655±34 1755±36 42.6 0.035 17 0.353 1.000 0.233

PCA i/d i/d i/d i/d i/d i/d 0.000 0 0.000 0.003
PIP 1075±79 1273±15 1304±58 1442±47 1659±34 1748±28 51.8 0.854 0.017 9 0.667 1.000 1.925

SNMF 1075±54 1270±10 1302±72 1442±33 1659±12 1748±20 59.0 0.855 0.000 14 0.429 1.000 18.479
SICA 1075±26 i/d 1304±41 1442±36 1659±17 1748±23 27.0 0.316 0.000 6 0.833 0.833 47.090

MSERS 1075±22 1270±15 1304±42 1442±38 1659±19 1748±20 135.9 0.452 0.497 8 0.750 1.000 269.300

L
U

N
G

T
IS

S
U

E

True 1078±unk 1265±unk 1302±unk 1445±unk 1602±unk 1618±unk 1665±unk 1745±unk
AIRPLS 1079±4 1263±2 1304±10 1447±38 1600±3 1618±3 1668±14 1750±8 9.7 0.150 0.020 242 0.033 1.000 0.014
RSERDS 1069±26 i/d 1296±46 1451±39 i/d 1624±36 i/d 1741±52 49.1 0.094 21 0.238 0.625 0.271

PCA i/d i/d i/d i/d i/d i/d i/d i/d 0.000 0 0.000 0.002
PIP i/d i/d 1316±47 1455±36 i/d 1624±36 i/d 1733±28 33.0 0.255 0.045 10 0.400 0.500 1.899

SNMF i/d i/d 1295±45 1454±39 i/d 1624±33 i/d 1733±36 38.8 0.520 0.006 5 0.800 0.500 16.440
SICA i/d i/d 1291±45 1446±37 i/d 1620±34 i/d 1729±51 45.9 -0.048 0.017 7 0.571 0.500 48.495

MSERS 1087±10 i/d 1302±44 1449±36 i/d 1624±25 i/d 1733±12 198.9 0.264 0.677 8 0.625 0.625 91.562
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Supplement
I. SMOOTHING

Tikhonov and generalized smoothing have been used to smooth the fluorescence spectrum (see section III for details), and
are compared in Fig. 5. Parameter values are chosen in the same way for Tikhonov as for generalized regalarization, with
the same values for λr but larger ones for λf , i.e. λer ∈ {11, 10, 9, 8} and λef ∈ {6, 5, 4, 3, 2, 1}. We observe, both methods
produce fluorescence with a similar overall shape but generalized smoothing is able to reduce the noise further than Tikhonov.
Additionally, generalized regularization is able to diminish the fluorescence better between Raman shifts 1000 and 1250.

Fig. 5: The figure shows the inferred fluorescence and Raman spectra using Tikhonov (Tikh.) and generalized (gen.) smoothing
for MSERS.
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II. MSERS DETAILED ALGORITHM

Algorithm 2 MSERS

Input: Y, {∆nk}Kk=2, K̃ λr, λf , imax, tol
Require: Y ≥ 0

r
[0]
n =

√∑
k(ykn−ȳn)2

K , n = 1, . . . , N

f
[0]
n = mink ykn, n = 1, . . . , N

Set L
i = 0, c[0] = 0 c[−1] = 0
while i ≤ imax & |c[i] − c[i−1]| ≥ tol× c[i−1] do
i = i+ 1
for k ∈ {1, . . . ,K} do
C = [L(∆nk)r[i−1], f [i−1],1]
x = NNLS(C,yk)

α
[i]
k = x1, β[i]

k = x2, b[i]k = x3

end for
for k ∈ {1, . . . ,K} do
yfk = yk − α[i]

k L(∆nk)r[i−1] − b[i]k
end for
Cf = CHOL

((∑K
k=1 β

[i]2

k

)
I + λfK̃

)
bf =

∑K
k=1 β

[i]
k yfk

df = Cf>
−1

bf

f [i] = NNLS(Cf ,df )
for k ∈ {1, . . . ,K} do
yrk = yk − β[i]

k f [i] − b[i]k
end for
Cr =

(√∑K
k=1 α

[i]2

k

)
I

br =
∑K
k=1 α

[i]
k yr

>

k L(∆nk)

dr = Cr>
−1

br

r[i] = NNLASSO(λr,C
r,dr)

c[i] =
∑K
k=1

∥∥∥yk − (α[i]
k L(∆nk)r[i] + β

[i]
k f [i] + b

[i]
k

)∥∥∥2

2

+λf f
[i]>K̃f [i] + λr‖r[i]‖1

end while
return (r, f ,α,β,b)

III. OPERATOR MATRIX

For example, for a shift of size 2, ∆n = 2, for N = 5, i.e. if the Raman intensity values are shifted by 2 places to the right,
the following would apply,

L2r =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



r1

r2

r3

r4

r5

 =


0
0
r1

r2

r3

 .
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IV. INITIALIZATION

McCain et al. [20], Cooper et al. [22] and Marshall and Cooper [22] agree that the initial background should be calculated
as the minimum value across the recorded spectra, for each n = 1, . . . , N . However they suggest different approaches to
the Raman spectrum. Cooper et al. use the standard deviation across the recorded spectra, for each n = 1, . . . , N whilst
Marshall and Cooper use the maximum across the spectra. McCain et al. subtract the initial background from each recorded
raw spectrum, un-shift them, i.e. apply L−(∆nk), and take the average. Fig. 6 shows the initial spectra as well as the inferred
spectra using MSERS with SESAME OIL. It is evident that all three initializations produce very similar inferred Raman spectra.
However, we observe that the maximum provides the least ‘Raman-like’ initial estimate and average un-shifting has a large
increase on the far right of the spectrum, due to the shifting. The standard deviation provides an initial estimate closest to that
of the inferred. Therefore, although all provide very similar Raman spectra, standard deviation is used (see section III).

Fig. 6: The figure shows the initial (init.) Raman and fluorescence estimates along with the respective inferred (infer.) spectra
for SESAME OIL using MSERS.



14 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

V. REGULARIZATION

To choose the optimum regularization parameter pair (see section III), Fig. 7 is used. The combinations are first filtered to
those which produce inferred Raman and fluorescence with a derived sparsity between 0.3 and 0.7 (shown in blue). Of those,
the pairing with the lowest correlation is chosen at the optimum (shown in red). In cases where there are multiple pairs with
the same correlation, as in LUNG TISSUE, the higher sparsity value is chosen. For SESAME OIL λr = NK× 10−8 gives a zero
Raman spectrum.

Fig. 7: The figure shows the derived sparsity of the Raman spectrum and correlation between the Raman and fluorescence
spectrum, for each regularization parameter combination. The labels on each point give (sparsity×102, correlation×102). The
blue points are those whose sparsity lies within the [0.3, 0.7] threshold and the red points are those which are chosen to be
the ‘best’ i.e. those with sparsity within the threshold and with lowest correlation.

Fig. 8 demonstrates the effect of varying regularization parameters on resulting inferred spectra. This is clearest in
CYCLOHEXANE where the background spectrum’s overall shape remains the same but its noise is reduced with increasing
λf (decreasing λef ). Additionally, the Raman spectrum does not lie on y = 0 for low λr (high λer) values whereas increased
values maintain the key Raman peaks and reduce the surrounding spectra to 0.

Fig. 8: The figure shows (top) the fluorescence spectra for constant sparsity parameter value λr and varying smoothness
parameters λf , and (bottom) the Raman spectra for constant smoothness parameter λf and varying sparsity parameter values
λr, for the chosen optimum parameter values for CYCLOHEXANE (λr = KN10−9, λf = KN10−8), SESAME OIL (λr =
KN10−9, λf = KN10−12) and LUNG TISSUE (λr = KN10−9, λf = KN10−8).

Table IV provides the optimum parameter value pairs for the spectra given over varying number excitation wavelengths, k
(see section IV-D.2).
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TABLE IV: Chosen parameter values for varying number of excitation wavelengths, given as KN10−λ
e
(·) .

CYCLOHEXANE SESAME OIL LUNG TISSUE
Exc. (K) λer λef λer λef λer λef

2 7 8 9 12 9 7
4 9 8 10 12 9 9
6 9 8 9 12 9 8
8 9 8 10 12 9 7
10 9 8 9 12 9 8

VI. SPECTRUM SHIFT

The oxygen and nitrogen peaks have been detected by finding the peak position within the ranges 1500-1620 cm−1 and 2300-
2350 cm−1 (in Raman Shift) respectively. There is little difference in the value of shift estimated from oxygen and nitrogen
peaks (see section III) for CYCLOHEXANE and LUNG TISSUE, seen in Fig. 9. The differences seen for SESAME OIL are due
to the large amount of background fluorescence around the nitrogen peak, resulting in difficulty in finding its exact location.

For CYCLOHEXANE, K = 10 measurements were obtained, resulting in the shift indices (∆nks)
{0, 4, 7, 10, 12, 14, 16, 18, 19, 21}. For SESAME OIL, K = 10 measurements were obtained, resulting in the shift indices
(∆nks) {0, 3, 6, 10, 12, 12, 16, 17, 19, 21}. For LUNG TISSUE, K = 10 measurements were obtained, resulting in the shift
indices (∆nks){0, 4, 7, 10, 12, 15, 16, 18, 19, 20}.

Fig. 9: The figure shows the shift in excitations estimated using oxygen and nitrogen peaks with respect to the first excitation.
The grid shows the resolution of the spectra.
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VII. INTERPOLATION

The collected data is processed by converting from wavelength to wavenumber and then interpolated onto an equispaced
grid (see section IV-B for details). Fig. 10 shows how the spectra’s resolution changes with interpolation.

Fig. 10: The figure shows 3 of the original and interpolated spectra for CYCLOHEXANE, with a focused view on the left most
peak (∼1028 cm−1) and the nitrogen peak (∼2331 cm−1). The grid lines show the positions of the data points.

VIII. CHANGING NUMBER OF EXCITATIONS

When changing the number of excitations (see section IV-D.2), the spectra are chosen such that the difference in the excitation
wavelength between each spectrum is maximized. For example, when K = 2, we choose the 1st and 10th spectrum; when
K = 4, we choose the 1st, 4th, 7th and 10th spectrm; when K = 6, we choose the 1st, 3rd, 5th, 7th, 9th and 10th and when
K = 8, we choose the 1st to the 8th.
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IX. ADDITIONAL INFERRED SPECTRA EVALUATION

Table V presents additional characteristics of the resulting spectra in Fig. 4 (see section IV-D.3). We expect all the information
in the observed spectra to be contained in the inferred Raman and fluorescence spectra, resulting in residuals that are ‘white
noise’, i.e. residuals with no autocorrelation. The Durbin-Watson test statistic provides a measure of this autocorrelation in
residuals, where values around 2 suggest no autocorrelation and values below (above) suggest positive (negative) autocorrelation.
The test statistic was calculated for each observed spectrum and the value furthest from 2 was reported. Although all values
in Fig. 4 are below 1, MSERS shows the highest across all datasets.

The table also gives peak start and end positions, without the assumption of symmetry as well the relative intensities of the
peaks that are not presented in Table III.
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